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Computer-generated holography (CGH) generates holograms using numerical algorithms, which have been
extensively researched and applied in various fields. This thesis investigates CGH and introduce a new approach called
quantum computer-generated holography (QCGH), exploring how quantum computing principles, algorithms, and
potential applications can be applied to CGH. After reviewing the basics of holography, including analogue and digital
hologram recording and reconstruction methods, we examine the numerical algorithms used in CGH. The concept
of QCGH is then introduced, highlighting its potential advantages over traditional CGH. We propose a quantum
version of Gerchberg-Saxton algorithm as a novel solution for QCGH, taking advantage of quantum computing’s
properties. As first example of QCGH, we detail the reasoning behind the implementation of the quantum circuit.
Finally, the potential applications of QCGH in fields such as 3D display technologies, holographic data storage, optical
microscopy, and remote sensing are discussed, considering ongoing advances in quantum computing hardware and
potential algorithmic improvements.
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Chapter 1

Introduction

Holography is a process for capturing and reconstructing three-dimensional (3D) images, resulting in a more realistic
and immersive visual experience than conventional 3D rendering. Its creation dates back to 1947 by Dennis
Gabor [GABOR, 1948]. Since then, it has developed and branched out into other sectors, including computer-
generated holography (CGH), which creates holograms devoid of the usage of physical objects by using numerical
algorithms. Various domains, including optical microscopy, metrology, data storage, and display technologies,
have benefited substantially from CGH research [Goodman, 2005, Benton and Bove Jr, 2008, Poon, 2006]. In this
work, we propose to pave the way for a new field, quantum computer-generated holography (QCGH), that results
from the combination of CGH and the development of quantum computing. This thesis examines the principles,
methods, and applications of CGH and QCGH, giving information about their effectiveness and prospective
future developments. To process information in ways that classical computers cannot, quantum computing uses
quantum physics concepts like superposition and entanglement [Nielsen and Chuang, 2002]. We will first go
through the basics of holography, including how to record and rebuild holograms using analogue and digital
methods. The fundamentals of CGH are next discussed, with an emphasis on the fundamental numerical hologram
generation techniques, such as the Gerchberg-Saxton (GS) algorithm and Stochastic gradient descent (SD) algorithm
[Gerchberg, 1972, Yang et al., 1994, Chen et al., 2019]. We also examine these algorithms’ challenges, including the
demands on memory and processing power and the trade-offs between image quality and computational effectiveness.
Then, we discuss the idea of QCGH and consider any benefits it might have over conventional CGH. By utilising
the capabilities of quantum computing and addressing several drawbacks present in traditional CGH algorithms,
QCGH may enable quicker and more effective hologram creation. We suggest the quantum Gerchberg-Saxton (QSG)
algorithm as the first algorithm candidate for QCGH. The QSG is based on a quantum adaptation of the GS that has
been altered to benefit from the unique features of quantum computing, such as quantum parallelism and exponential
speedups [Shor, 1999, Grover, 1996]. We create the quantum circuit detailing the role of each section and run an initial
version on a quantum simulator. We will delve into the model and the role of the different entities in CGH, to establish
a mapping between such entities and quantum circuit components. In our final section, we discuss other fields in
which holography impacts (and so quantum holography), such as optical microscopy, holographic data storage, remote
sensing, 3D display technologies. We also consider the future of QCGH in the context of ongoing developments in
quantum algorithmic advancements such as quantum machine learning (QML) approaches.

1.1 Background

Dennis Gabor invented holography(Figure 1.1), a technique that captures and reproduces an object’s three-dimensional
(3D) structure, in 1947 to improve electron microscopy [GABOR, 1948]. However, holography did not find practical
uses until the invention of the laser in 1960, such as in data storage and 3D displays with the work of Leith
et al. [Leith and Upatnieks, 1964]. The invention of digital holography techniques in the 1960s pushed its pos-
sibilities even further, allowing computers to generate holograms(Goodman et al. [Goodman, 1967]). CGH has
become an essential tool in various applications, including microscopy, metrology, and 3D displays [Poon, 2006].
Conversely, recently, a quantum approach was described to do holography [Töpfer et al., 2022], and quantum
principles were applied to holography [Abouraddy et al., 2001, Sokolov et al., 2001, Defienne et al., 2021]. Con-
tinuous advances in computer capacity and the pursuit of more efficient and precise methods for creating holo-
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Figure 1.1: Dennis Gabor explaining an off-axis hologram. Credit: AIP Emilio Segrè Visual Archives, Physics Today
Collection.

grams have marked the growth of CGH algorithms [Matsushima, 2020]. The introduction of the Fourier trans-
form holography technique [Waters, 1968, Lu, 1968], the development of iterative phase retrieval algorithms
(for example Gerchberg-Saxton [Gerchberg and Saxton, 1973]), and the introduction of wavefront encoding tech-
niques( [Brown and Lohmann, 1969, Lee, 1978]) were all significant milestones in the development of CGH algorithms.
In recent years, quantum computing, a breakthrough technique that uses quantum mechanics principles to tackle com-
plicated problems quicker and more efficiently than conventional computers, has shown in [Nielsen and Chuang, 2001].
To our knowledge, no approach for CGH uses quantum computing principles. As quantum computing has ad-
vanced, quantum algorithms have begun to appear, potentially overcoming some of the constraints of classical
algorithms, and QCGH would use quantum parallelism and entanglement, potentially leading to faster computing times
as theorized in computer graphics [Lanzagorta and Uhlmann, 2005a, Lanzagorta and Uhlmann, 2005b] and image
processing [Caraiman and Manta, 2009, Ruan et al., 2021, Beach et al., 2003].

1.2 Objectives
This thesis builds upon the foundational principles of CGH and seeks to create a groundbreaking design for an
algorithm for QCGH. Our research focuses on identifying how quantum computing can drive advances in holography.
We outline our precise goals for this study as follows:

1. Literature Review: a thorough assessment of the body of knowledge on holography, CGH and quantum
computing should be conducted to lay a firm foundation for understanding these topics. This review will examine
our study’s theoretical underpinnings, methods, and relevant works.

2. Algorithm Design: create a quantum algorithm based on iterative phase retrieval algorithms Gerchberg-Saxton.
The holographic computation method must incorporate quantum computing concepts like superposition and
entanglement.

3. Algorithm Implementation: implement a quantum circuit that can be run and used to retrieve phase to follow the
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same step as the Gerchberg-Saxton algorithm.

4. Discussion and Future Works: we highlight how we map the entities and procedures of holographic computation
into their quantum counterpart and we depict the implications, advantages and next steps in the implementation
of the proposed algorithm. We describe possible applications of QCGH in various industries, including data
storage, imaging, metrology, etc.

1.3 Scope and Limitations
The design of a quantum algorithm for CGH is the main contribution of this research. The research will review the
different CGH selecting the most suitable to be the basis for the quantum version. We discuss the implementation with
limits and future works for the QCGH algorithm. The state of quantum computing technology currently is one of
this study’s limitations. It takes a quantum computer with enough qubits and gate operations to construct a quantum
algorithm for the QCGH. Since few such quantum computers are now available, future developments in quantum
computing will determine the algorithm’s scalability and applicability. The intricacy of the QCGH algorithm design is
another drawback. Creating a suitable algorithm necessitates a thorough knowledge of CGH and quantum computing,
which may limit the research’s generalizability to researchers with weak backgrounds in these areas. The research
will only implement and run the QCGH algorithm using quantum computing simulators. These simulators may not
precisely reflect how the algorithm performs on actual quantum computers, although they can nevertheless offer
valuable insights into the program’s performance. Despite the extensive scope of this study, a few limitations should
be noted:

• The quantum algorithm created in this paper will be tested on a simulator, which might not accurately represent
the complete spectrum of quantum computing hardware.

• The study might not be able to fully utilise the benefits of QCGH due to the present constraints of quantum
computing technology, such as error rates and decoherence.

• The practical deployment of QCGH in real-world applications may confront difficulties, such as integrating
quantum computing technology with existing optical systems and developing appropriate holographic materials.

Despite these limitations, this research aims to provide the groundwork for future research and development in
QCGH and its possible applications.
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Chapter 2

Literature Review

Holography is a method that makes it possible to capture three-dimensional images by keeping crucial details about
the amplitude and phase of light waves. Physicist Dennis Gabor, who later won the Nobel Prize for his work on it in
"A new microscopic principle" [GABOR, 1948], first proposed this approach in 1948. After that, this method has
made significant strides in various fields, including medical imaging technology, businesses that use it to store massive
amounts of digital data, and creative endeavours like art.

2.1 From Holography to Computer-Generated Holography

2.1.1 Principles of Holography

Holography is based on the principles of interference, diffraction, and coherence of light waves. Unlike traditional
photography, which only captures the amplitude of light waves, holography records both the amplitude and phase. This
is achieved by generating an interference pattern between the reference wave, direct light from the source, and the object
wave, which is light dispersed by the object, respectively [Leith and Upatnieks, 1965]. Object lighting, interference,
and recording are essential to creating a hologram. Normally, when we illuminate an object, the light scatters and
creates a wave containing object information (object wave); such wave is defined by the amplitude (intensity)and the
phase containing shape information. When we take a photo, we record the variation of light intensity.

𝐼 (𝑥, 𝑦) ∝ |𝜓𝑝 (𝑥, 𝑦) |2 (2.1)

where 𝜓𝑝 (𝑥, 𝑦) is the two-dimensional complex amplitude. In the photograph, the information of phases is lost,
shown also by Equation 2.1. Holograms are created by lighting an item with a coherent light source—typically a
laser—divided into two beams by a beam splitter in the illumination step: the object beam and the reference beam. The
object wavefront is formed by the light dispersed from the object after the object beam illuminates the object. The object
wavefront is referenced in phase by the reference beam, which does not interact with the object [Hariharan, 1996].
The object and reference wavefronts merge and interfere with one another in the interference stage to produce an
interference pattern. Bright and dark fringes make up this pattern, reflecting light waves’ constructive and destructive
interference. The interference pattern encodes the object wavefront’s amplitude and phase data required for the 3D
picture reconstruction. In the recording stage, the interference pattern is recorded on a photosensitive medium, such as
a photographic film or a digital sensor. The hologram is permanently recorded due to the material’s reaction to the
interference pattern’s light intensity. When lighted by an appropriate reference beam, this recording may be utilised to
recreate the original 3D scene. The recorded hologram is lit by a reference beam that is the same as the one used for
recording to rebuild the three-dimensional image. To recreate the original object wave, which then propagated to the
observer’s eye and creates a virtual image of the object, the interference pattern on the hologram diffracts the reference
beam [Hariharan, 1996]. The fact that the recorded hologram contains both the amplitude (brightness) and phase
information of the light dispersed from the object is a critical characteristic of holography. When the hologram is lit
with the proper reference beam, which is necessary since this phase information stores the depth and spatial layout of
the item, the original 3D picture may be recreated.

11
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Figure 2.1: The basic principle of holography. A laser light illuminates an object, and a diffraction pattern is recorded
when it interferes with the reference ray. Using the reference light and the interference pattern, we can reconstruct the
3D image of the object.

The hologram can generally be explained by recording each point that constitutes the entire object. For example
Figure 2.1 shows how a laser is split into two waves by a beamsplitter, and then recombined by the use of mirrors and
another beamsplitter. One ray (object wave) will hit the pinhole representing the object, and the other will hit the
recording medium (reference wave). If 𝜓0 is the object wave’s field distribution and 𝜓𝑟 is the reference, we will record
the interference between them |𝜓0 + 𝜓𝑟 |2 in the medium. Since the pinhole aperture can be modelled by a 𝛿(𝑥, 𝑦), by
Fresnel diffraction, we have on the medium an object wave known as paraxial spherical wave(Equation 2.2).

𝜓0(𝑥, 𝑦; 𝑧0) = 𝛿(𝑥, 𝑦) ∗ ℎ(𝑥, 𝑦; 𝑧0)) = 𝑒− 𝑗𝑘0𝑧0
𝑗 𝑘0

2𝜋𝑧0
𝑒

[
− 𝑗 𝑘0

2𝑧0
(𝑥2 + 𝑦2)

]
(2.2)

As the reference wave propagates, maintaining the phase

𝜓𝑟 = 𝑎𝑒− 𝑗𝑘0𝑧0 (2.3)

Giving an hologram with amplitude:

|𝜓𝑟 + 𝜓0 |2 =

����𝑎𝑒− 𝑗𝑘0𝑧0 + 𝑒− 𝑗𝑘0𝑧0
𝑗 𝑘0

2𝜋𝑧0
𝑒

[
− 𝑗𝑘0

2𝑧0
(𝑥2+𝑦2 )

] ����2 (2.4)

Such an equation can be simplified from complex to real if we have a real hologram and the resulting formula (not
reported here) is a sinusoidal function called Fresnel zone plate (FZP), that is, the hologram with a distance 𝑧0 from the
recording medium. Studying FZP, we are able to identify the local fringe frequency and notice its increase with the spatial
coordinate. Thus, local frequencies have information on 𝑧, so from it we can deduce the distance of the point source.
Many hologram forms have arisen depending on the locations, quantities, and angles of the reference and object beams
utilised in holographic recording. Different holograms may exist, including reflection, transmission, single beam, off-
axis, and on-axis. Holograms can be categorized into two categories: phase holograms [Zhang and Yamaguchi, 1998,
Yamaguchi and Zhang, 1997] and amplitude holograms [Wyrowski, 1990].Phase holograms modify the phase of
the reference beam, whereas amplitude holograms alter the amplitude of the reference beam during reconstruction.
Although a 3D picture may be reconstructed using any form of hologram, phase holograms frequently provide
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Figure 2.2: Off-Axis Holography principle.

higher image quality and less noise. Numerous uses for holography have been discovered in several industries,
including interferometry, microscopy, entertainment, and data storage [Coufal et al., 2000]. Holography has been
employed in the arts and entertainment to produce eye-catching 3D pictures and displays for exhibits, concerts, and
performances [Matthews and Nairn, 2023]. Holographic data storage systems have been created to store vast amounts
of data in a small footprint, potentially outperforming more conventional storage approaches [Ashley et al., 2000].
Holographic methods in microscopy have made it possible to acquire 3D data from biological samples with great
resolution and little sample damage [Vanligten and Osterberg, 1966, Bally, 2013, Simon et al., 2008]. Holography
has been used in interferometry to examine how things deform and move under various circumstances, revealing
important details about the mechanical behaviour of the materials [Ostrovsky and Butusov, , Heflinger et al., 1966,
Rastogi, 2013].

2.1.2 Holograms Classification

2.1.2.1 Off-axis vs On-axis Holography

On-axis and off-axis holography are two types of holography that may be distinguished depending on the angle of the
object and reference beams. The object and reference beams in on-axis holography have a null angle between them.
In contrast, off-axis holography creates a fringe pattern in the hologram by slightly angling the reference and object
beams.

Off-axis holography As shown in Figure 2.2, off-axis holography is based on the interference of two coherent light
beams. One interacts with the object of interest (object beam) while the other remains undisturbed (reference beam).
Off-axis holography assures the formation of unique, non-overlapping spectral components in the Fourier domain
by adding an angle between these beams. This spatial separation allows for extracting complicated wavefront data
without needing phase-shifting or several exposures, which speeds up the holographic process. Off-axis holography
uses a laser source to provide the requisite coherent light beams. These beams are divided by a beam splitter, which
angles the reference beam to the object beam. Following their interaction with the object, both beams interfere with a
digital recording medium, such as a charge-coupled device (CCD) or a complementary metal-oxide-semiconductor
(CMOS) sensor, resulting in an off-axis hologram. Following that, sophisticated digital processing techniques like
Fourier transformation and filtering allow for separating and reconstructing the necessary complex wavefront.

On-axis holography On-axis holography is when the object and reference waves have a zero angle, as shown in
Figure 2.3. Even when no object is in view, off-axis holography generates fringe patterns, commonly cosine fringe
patterns. These fringe patterns record the object’s phase and may be utilised to extract the necessary term from the
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Figure 2.3: On-Axis Holography principle.

hologram. A Fourier transform is performed on the hologram to digitally isolate the required term, which changes the
multiplication into correlation owing to the Fourier transform features. The hologram’s Fourier transform has several
orders of the term, with the first two being the DC terms placed at the original Fourier transform plane. The carrier
frequency may be eliminated by cropping and centring the plus one order term, and an inverse Fourier transform can
be used to return to the picture plane, resulting in the required term multiplied by the square of the reference wave.

2.1.2.2 Image Holography

An image hologram is a particular kind in which the object beam is made up of the light emanating from an actual
picture of the item produced by a lens. This allows for recording the interference pattern between a reference beam
and a genuine picture. An image hologram’s light field dispersion during recording may be written as follows:

𝑡 (𝑥, 𝑦) = |𝜓𝑖 (𝑥, 𝑦) + 𝜓𝑟𝑒
𝑗∗𝑘0∗𝑠𝑖𝑛𝜃∗𝑥 |2 (2.5)

Where 𝜓𝑟𝑒
𝑗∗𝑘0∗𝑠𝑖𝑛𝜃∗𝑥 is the off-axis reference beam, and 𝜓𝑖 (𝑥, 𝑦) is the complex field of the picture generated on the

hologram plane. The genuine picture is recreated onto the hologram plane using the same reference beam orientation.
As chromatic aberration is reduced when the picture is on the hologram plane, this enables the reconstruction of image
holograms using white light. Additionally, the twin image is rebuilt on the holographic plane. Therefore, off-axis
recording is required to distinguish between the twin picture and the intended reconstructed image.

Diffraction calculations can be used to model the reconstruction of an image hologram while simulating the image
hologram. The actions are:
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1. Fresnel diffraction models the desired object and determines the field distribution at the hologram plane 𝜓𝑖 (𝑥, 𝑦).

2. To mimic the recording process, add an off-axis reference beam using the formula 𝜓𝑟𝑒
𝑗∗𝑘0∗𝑠𝑖𝑛𝜃∗𝑥 .

3. Use Fresnel diffraction for several wavelengths to propagate the hologram field to the reconstruction distance
during reconstruction.

4. To create a white-light reconstruction on the holographic plane, add the monochromatic reconstructions.

This basic simulation may be expanded to incorporate twin images and various diffraction orders, among other
effects. Reconstruction will demonstrate that due to little chromatic aberration, the genuine picture sharpness is
retained on the hologram plane even under polychromatic light.

2.1.3 Digital Holography

Given that the recording strategies are the same, the main distinction between optical and digital holography is
replacing the recording medium with an electrical device, such as a charge-coupled device (CCD). To rebuild the
hologram, optical interference fringes captured by the CCD are converted into a two-dimensional digital signal and
then processed digitally. Hologram construction and reconstruction may be fully numerically simulated using digital
techniques. A display device can then receive the hologram for optical reconstruction. To replicate diffraction between
the hologram and the diffraction plane or the observation plane in each of these scenarios, we must first model
interference between the object and the hologram at the front end of the process. Digital holography has the benefit
of focusing, which allows the 3D scene to be rebuilt plane by plane inside the computer. Because multiple planes
of the item may be visualised and analysed independently, a more complete and accurate reconstruction of the 3D
object is possible. The focusing effect is especially effective when the item has complex or variable forms, allowing
for greater visualisation and comprehension of the object’s structure and features. The capacity to record dynamic or
time-varying objects in real-time is a significant advancement in digital holography. Microscopy, biological imaging,
and industrial inspection all need the gathering and analysis of dynamic 3D situations. In addition, it is possible to
handle moving holograms and real-time or near-real-time reconstruction of 3D scenes. Employing improved algorithms
and computational approaches for hologram processing and picture reconstruction is another key achievement in
digital holography. Among these approaches are iterative, phase retrieval, and wavefront shaping algorithms. These
algorithms and approaches increase hologram quality and accuracy, speed up the reconstruction process, and allow for
correcting aberrations and distortions in holographic pictures—digital holography impacts the hologram recording
and reconstruction phase.

2.1.3.1 Hologram Recording

The interference pattern is immediately recorded using a digital camera in digital holography. The strength of the
interference pattern is captured by the digital camera and turned into a digital hologram. The digital hologram provides
information on the object wavefront’s complex field, including amplitude and phase. The recorded hologram is
commonly saved as a two-dimensional array of complex integers, with each element representing a hologram pixel.
The dynamic range and resolution of the digital camera used to record the hologram are critical in determining the
quality of the reconstructed hologram.

2.1.3.2 Hologram Reconstruction

In digital holography, optical hologram reconstruction entails lighting the recorded hologram with a coherent
laser beam that acts as the reference wave. The hologram diffuses the incident light, reconstructing the object
wavefront and creating a three-dimensional representation of the object. Several methods, such as holographic
displays [Yaraş et al., 2010] or spatial light modulators [Efron, 1994, Casasent, 1977], can be used to visualise the
rebuilt image as shown in Figure 2.4 and 2.5.

In digital holography, computational holographic reconstruction entails utilising computational tools to analyse the
recorded hologram and retrieve the three-dimensional picture of the item. Methods that perform Fourier transforms,
filtering, and numerical propagation(an example of propagation is 2.6) can be used to compute the object wavefront
from the recorded hologram. The rebuilt picture can be viewed on a computer screen or other digital device.
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Figure 2.4: Hologlass, a product from Looking Glass Factory (Courtesy from Looking Glass Factory)

Figure 2.5: Spatial Light Modulators serve to change the phase of light (Courtesy from ThorLabs).

𝑢(𝑥, 𝑦) =
∫ 2𝜋

0

∫ ∞

0
𝑢0(𝑥, 𝑦)

𝑒𝑖𝑘𝑟

𝑟
cos(𝜃)𝑑𝑥𝑑𝑦 (2.6)

2.2 Computer Generated Holography

Making holograms with computers is called computer-generated holography, or CGH. Calculating the interference
pattern between a reference wave and an object wave produces CGH holograms. A spatial light modulator (SLM) is
used to show the digital picture that was created from the interference pattern. The SLM has a hologram of the item by
diffracting the light. Compared to conventional holography, CGH provides several benefits. CGH holograms may be
constantly changed and made in any size and form. CGH holograms can also be utilised to produce holograms of
things that aren’t there.

Holographic light transport (HLT), a method for mimicking the movement of light in holographic systems, is the
basis for CGH. HLT is based on the wavefront reconstruction principle, which asserts that a wavefront’s amplitude and
phase at any location in space may be calculated given those values at two separate planes. HLT makes it possible to
create holographic displays, develop novel holographic algorithms, and research holographic systems. Modelling
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the intricate interactions between light and matter in holographic systems is one of the trickiest problems in HLT.
Diffraction, reflection, and refraction are possible components of these interactions. HLT algorithms need to be
able to represent these interactions to create precise, realistic simulations. The computational complexity of the
issue is another challenge with HLT. Solving many differential equations is required to mimic light transmission in a
holographic system. HLT algorithms must be effective and scalable to be used in real applications.

2.2.1 Early steps of CGH

2.2.1.1 The Detour-Phase Hologram

The detour-phase hologram is a milestone of CGH that was developed in the 1960s [Brown and Lohmann, 1966,
Lohmann and Paris, 1967, Brown and Lohmann, 1969] before the availability of grey-scale displays. It allowed the
reconstruction of holographic images from binary (opaque or transparent) holograms. The hologram is divided into an
array of cells, each containing a simple binary pattern. Such a pattern in each cell controls the amplitude and phase of
the light passing through. Amplitude control is achieved by varying the transparent window size in each cell while
Phase control is achieved by slightly shifting the position of each window, causing a "detour phase". The complex
hologram field is discretized into cells to generate a detour-phase hologram, with amplitude and phase values per
cell. Then, the amplitude is represented by the window size in each cell. The phase is represented by shifting the
window proportionally to the desired phase value. The window shifting introduces an optical path length difference,
creating the detour phase. The binary cells are tiled to create the full hologram pattern. Upon illumination, each cell
diffracts light with the encoded amplitude and phase. The aggregate diffraction pattern reconstructs the holographic
image despite using only a binary hologram. The detour-phase method was an early clever technique to work around
limitations in hologram display technology. It enabled reconstructing holographic images from binary patterns that
could be printed. However, the diffraction efficiency is low compared to true gray-scale holograms.

2.2.1.2 The Kinoform Hologram

The kinoform hologram [Lesem et al., 1969] is a type of CG hologram that records only the phase information of a
complex hologram. Kinoforms allowed the reconstruction of holographic images more efficiently than prior binary
holograms. In a kinoform, the amplitude component of the hologram’s complex field is ignored and set to a constant
value. Only the phase is retained and encoded into a surface profile that modulates the phase of the incident light. This
is based on the concept that randomly scrambling the amplitude while retaining the original phase allows recognisable
reconstruction for many objects.

The kinoform hologram can be expressed as the simple formula:

𝐻𝑝(𝑥, 𝑦) = 𝑒− 𝑗 𝜙 (𝑥,𝑦) (2.7)

with 𝜙(𝑥, 𝑦) that represents the phase component of the complex hologram field. Early kinoform holograms were
generated optically by recording the interference pattern of an object and reference beam on a photographic plate.
After development, the plate was bleached to convert the amplitude hologram into a phase hologram.

For computer generation, the process is simplified. The spectrum of the target object is computed. Then the phase
is extracted and used as the kinoform pattern. This phase-only hologram can be displayed on a phase-modulating SLM.

The benefit of the kinoform is greatly improved diffraction efficiency compared to binary holograms. In principle,
all of the incident light is directed into the reconstructed image, rather than wasted in a zero-order beam. However, the
reconstruction quality depends on the object having a fairly uniform spectrum amplitude.

2.2.2 Algorithms for Computer-generated holography

The computer techniques used to make holograms have evolved alongside the discipline of holography. CGH has
evolved as a dominant technique for producing holograms with the arrival of powerful computers and complex
algorithms [Hirsch et al., 1971]. This section digs into the basics of computer-generated holography, focusing on the
algorithms that create very realistic three-dimensional images. The act of recreating the interference pattern of light
waves that would occur if a coherent light source lighted an item is at the heart of CGH. The necessity to properly
represent wavefronts and their interactions while minimising computer complexity and resource needs drove the creation
of CGH algorithms. Several approaches have been devised and modified to meet these issues. The Fourier Transform
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approach, which relies on the inherent link between a hologram’s spatial and frequency domains, was one of the early
methods for CGH. The FT technique produces a frequency domain hologram by calculating the Fourier transform
of the object’s complex amplitude distribution. To address the limitations of the FT, researchers created several
iterative CGH algorithms. One such approach is the Gerchberg-Saxton algorithm [Gerchberg and Saxton, 1973],
which iteratively refines the hologram by alternating between the object and hologram planes, enforcing constraints
on the amplitude and phase of the light field. To increase its convergence and efficiency, the GS method has been
expanded and changed multiple times [Zhao and Chi, 2020, Wu et al., 2021b].

Deep learning has lately opened up new opportunities for developing CGH algorithms. To learn the intricate mapping
between object representations and their related holograms, neural networks have been used, resulting in efficient
and accurate hologram synthesis [Eybposh et al., 2020, Horisaki et al., 2018, Wu et al., 2021a, Khan et al., 2021].
Although their scalability and generalisation capabilities are still under investigation, these deep learning-based
algorithms have proven tremendous potential for real-time and high-resolution hologram creation. In the next sections,
we detail various algorithms, noting their advantages, disadvantages, and applications. Finally, we examine the most
recent advances in deep learning-based CGH approaches, highlighting their possible effect on the field’s future.

2.2.2.1 Iterative Fourier Transform and Iterative Phase Retrieval Algorithms

The kinoform hologram introduced previously records only the phase information of a hologram’s complex field. While
this improves diffraction efficiency, noise often degrades the reconstructed image. The iterative Fourier transform
algorithm (IFTA) provides a technique to optimize the phase-only kinoform to improve image quality. Iterative
Phase Retrieval Algorithms (IPRAs) are a type of IFTA that focus on object’s phase information from its intensity
distribution. These techniques update the phase distribution iteratively until it converges to a solution that meets the
stated criteria. IPRAs work based on an initial estimate of the phase distribution, which might be random or based on
prior information about the object. The method then alternates between estimating the hologram’s complex field from
the phase distribution and updating the phase distribution based on the estimated complex field. This procedure is
done until the phase distribution converges to a solution that meets the specified constraints. Iterative phase retrieval
methods have received much attention due to their capacity to produce high-quality computer-generated holograms.
By limiting the amplitude and phase of the light field in both the object and hologram planes, these methods seek to
modify the phase distribution of a hologram iteratively. In this part, we describe the essential iterative phase retrieval
algorithms, expanding on their working principles, computational complexity, processing time, and the approaches
used in their creation. One of the first and most well-known iterative phase retrieval algorithms is the Gerchberg-
Saxton [Gerchberg and Saxton, 1973]. It works by alternating between the object and hologram planes while placing
amplitude limits on the wavefront in each cycle. The GS algorithm starts with an estimate of the complex amplitude
distribution of the object and repeatedly refines the phase distribution in the hologram plane. The GS algorithm’s
principal strength is its simplicity; however, it converges slowly and may not always attain the global minimum of
the error function [Fienup, 1982]. The author created the error reduction (ER) and input-output (IO) algorithms,
which are modified versions of the GS technique, to solve the shortcomings of the GS algorithm. The ER algorithm
tightly maintains amplitude limits, but the IO algorithm modifies the update rule to enhance convergence time. Both
techniques performed better than the original GS algorithm regarding convergence rate and reconstruction accuracy.
However, the computational complexity of holograms remains an issue, especially for large-scale holograms. The
hybrid input-output (HIO) approach, which combines the capabilities of the ER and IO algorithms, is another notable
improvement in iterative phase retrieval methods [Fienup, 1982]. In subsequent rounds, the HIO algorithm alternates
between the ER and IO update rules to balance the benefits of stringent amplitude constraint compliance with quick
convergence. Although the HIO approach has been successfully applied to various CGH applications, it may still suffer
from local minima stagnation, demanding more algorithmic modifications and optimisations [Marchesini et al., 2003].
Researchers have created various modifications and variants of iterative phase retrieval methods to improve their
performance in certain applications over the years. Among them are adaptive step-size approaches, which dynamically
change the update rule to minimise stagnation and speed up convergence [Bauschke et al., 2002]. The number of
iterations and the hologram size dictate the processing time of iterative phase retrieval techniques. Researchers
have investigated parallel processing options such as putting algorithms on graphics processing units (GPUs) or
field-programmable gate arrays (FPGAs) to speed up computing [Nishi et al., 2005, Lenart and Owall, 2005]. Despite
advances in iterative phase retrieval techniques, finding the global minimum of the error function remains difficult
because these algorithms are sensitive to initial condition selection and can become caught in local minima. Researchers
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have examined global optimisation techniques, such as simulated annealing and genetic algorithms, to direct the search
process towards the global minimum to overcome this constraint [Ramsey et al., 2005, Wen et al., 2005]. Iterative
phase retrieval techniques have shown substantial promise for producing high-quality computer-generated holograms.
These methods have achieved excellent reconstruction accuracy and resolution by iteratively refining the phase
distribution of the hologram and setting limits on the amplitude and phase of the light field. On the other hand, their
computational complexity and sensitivity to beginning circumstances remain issues that need continual study and
optimisation.

Gerchberg–Saxton Algorithm The Gerchberg-Saxton (GS) algorithm is one of the most widely used IPRAs. The
GS algorithm’s fundamental steps are as follows:

1. Begin by calculating an initial estimate of the phase distribution, 𝜙(0).

2. Using the Fourier transform, determine the complex field of the hologram, 𝐸 (0), using the predicted phase
distribution.

3. Set the complex field’s amplitude to the observed intensity distribution, |𝐸 (0) | =
√
𝐼.

4. Using the inverse Fourier transform, calculate the updated estimate of the phase distribution, (1), from the
updated complex field, 𝐸 (1).

5. Steps 2-4 must be repeated until the phase distribution converges to a solution that meets the set criteria.

Python implementation of the GS algorithm is the Appendix A.1
In this implementation, 𝐼 represents the measured intensity distribution, 𝜙(0) represents the starting estimate of

the phase distribution, 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 represents the maximum number of iterations, and 𝑡𝑜𝑙 represents the convergence
tolerance. The function returns the rebuilt phase distribution, 𝜙. NumPy and SciPy routines for Fourier transformations
are used to build the approach. There are several alternative techniques for phase retrieval, each with its own set of
pros and limitations: angular spectrum method (ASM), Fresnel transformation algorithm (FTA) and wavelet-based
holography(WBH). ASM is based on 2D Fourier transform, while FTA calculates light diffraction with the wavefront
that is not parallel to the hologram plane, by splitting into a set of plane waves that travel across the hologram. Finally,
WBH describes a method for rebuilding holograms by extracting information using wavelet decomposition.

Computational Complexity and Processing Time The computational cost of Fourier-based techniques is determined
by the Fast Fourier Transform (FFT) technology utilised to produce holographic patterns. The complexity of FFT is
𝑂 (𝑁𝑙𝑜𝑔𝑁), where 𝑁 is the number of discrete points in the object wavefront. As a result, the amount of input data
and available computer resources significantly impact processing time [Cooley and Tukey, 1965]. IFTA techniques
sometimes need many optimisation algorithm rounds, including numerous FFT computations, increasing overall
complexity. Despite this, the additional processing cost is typically outweighed by the improved diffraction efficiency
and stability of phase-only holograms.

Techniques to Improve Processing Time and Efficiency Several ways to improve The processing speed and
efficiency of Fourier-based algorithms for CGH have been studied. Among these techniques are:

• Parallel computing and GPU computing: Researchers have implemented Fourier-based approaches on Graphics
Processing Units (GPUs) and other parallel architectures to take advantage of the parallel nature of FFT
calculations [Moreland and Angel, 2003], resulting in a considerable decrease in processing time.

• Compressive sensing techniques have been used to minimise the number of samples required for hologram creation,
lowering the computing complexity and processing time of Fourier-based systems [Rivenson et al., 2013].

• LUT (look-up table) methods: LUT-based approaches have been suggested to accelerate iterative optimisation
algorithms by precompiling and storing complicated exponential values or phase increments, lowering
trigonometric calculations during the optimisation process [Kim and Kim, 2008].
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2.2.2.2 Other Techniques

Aside from Fourier-based approaches and iterative phase retrieval algorithms, various alternative techniques for CGH
have been developed. These approaches are intended to overcome the shortcomings of the prior methods, such as
computational complexity and processing time. This part will look at several alternatives, such as direct fringe
pattern-generating methods and deep learning-based algorithms.

Deep Learning-based Algorithms Deep learning breakthroughs in recent years have opened up new opportunities for
developing CGH algorithms. To learn the intricate mapping between object representations and their related holograms,
neural networks have been used, resulting in very efficient and accurate hologram synthesis [Shimobaba et al., 2022,
Rivenson et al., 2019]. Convolutional neural networks (CNNs) have been used to generate holograms, with the network
learning the inverse process of light propagation [Horisaki et al., 2018] or phase-recovery and holographic image
restoration [Rivenson et al., 2018], compression phase [Jiao et al., 2018] or end-to-end process [Eybposh et al., 2020].
CNN-based hologram creation has shown promise for real-time and high-resolution hologram generation while
requiring substantially less computer complexity than existing approaches. However, extending these technologies
to large-scale holograms remains a difficulty. For CGH, generative adversarial networks (GANs) have been
used [Lee et al., 2018, Chen et al., 2018], in which the generator network generates holograms that are difficult for
a discriminator network to differentiate from actual holograms. GAN-based approaches have shown potential in
producing high-quality holograms with complicated object representations, but they are susceptible to training
instability and mode collapse [Creswell et al., 2018].

Overview of Neural CGH Methods There are two approaches to neural CGH methods: data-driven and model-
driven. Using vast datasets of known instances, data-driven techniques train neural networks to learn the mapping
between the input data and the intended holographic patterns [Rivenson et al., 2019]. On the other hand, model-driven
techniques incorporate CGH physical principles into neural network architecture, eliminating the requirement for large
amounts of training data [Liu et al., 2023a, Zheng et al., 2023, Chen et al., 2021].

Data-driven Neural CGH To learn the mapping between input items and their associated holographic patterns, deep
convolutional neural networks (CNNs) are typically utilised in data-driven neural CGH techniques [Shi et al., 2021].
With training data of matching holographic patterns and pairs of input objects, these networks are taught using
supervised learning techniques. Fully convolutional networks (FCNs), generative adversarial networks (GANs), and
autoencoders [Wu et al., 2021a, Shimobaba et al., 2017] are some of the designs for data-driven neural CGH that
have been used in inferring multiple fringe pattern [Kang et al., 2021] or for stereoscopic images [Chang et al., 2022].
These designs have been discovered to produce high-quality holograms with fewer artefacts and noise compared to
conventional CGH methods.

Model-driven Neural CGH Model-driven neural CGH approaches incorporate holographic concepts directly
into network design by including layers that perform Fresnel propagation, Fourier transforms, and phase re-
trieval [Choi et al., 2021, Rivenson et al., 2018]. This method eliminates the dependency on massive training datasets
and can potentially increase the network’s generalisation and interpretability. The DeepCGH architecture, for example,
adds a Fourier transform layer into a CNN and learns the connection between input objects and their associated
phase-only holograms [Eybposh et al., 2020].

Computational Complexity and Processing Time The computational cost of neural CGH approaches is determined
by the neural network’s architecture and size and the optimisation algorithm utilised during the training phase. Training
neural networks may be computationally costly, necessitating powerful GPUs and vast quantities of RAM. However,
once trained, a neural network’s forward pass for hologram creation has a low computational cost, making it suited for
real-time applications. The training phase, which can take hours or even days depending on the amount of the training
dataset, the neural network topology, and the available computational resources, dominates the processing time of
neural CGH approaches. However, due to the reduced complexity of the forward pass, the production of holograms
using a neural network is often quicker than standard CGH techniques once trained.
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Techniques to Improve Processing Time and Efficiency Several ways to improve the processing speed and
efficiency of neural CGH systems have been proposed, including:

• Transfer learning may exploit pre-trained neural networks, lowering the quantity of training data and time
necessary to attain acceptable performance [Huang et al., 2022a].

• Pruning and quantization of neural networks: These approaches may be used to minimise the size and
complexity of neural networks, resulting in quicker processing times and lower memory needs [Shortt et al., 2006,
Huang et al., 2022b].

• Parallel and GPU-based computing: Neural CGH, like classic CGH approaches, may benefit from par-
allel and GPU-based computation to speed up the training and inference procedures [Chen et al., 2022,
Rivenson et al., 2018, Liu et al., 2023b].

2.3 Quantum Computing

Quantum computing is an interdisciplinary area that merge quantum physics, computer science, and information theory
and provides major advances in information processing by utilising the unique characteristics of quantum physics.
This computing discipline extends beyond the bounds of classical computing and promises to address issues that
classical computers cannot answer [Shor, 1999, Grover, 1996]. Quantum computing, a branch of physics and computer
science, uses the principles of quantum mechanics. The concept of quantum state is as a central concept encapsulating
information about a quantum system, unlike classical physics. Vectors represent a quantum system in a complex Hilbert
space, and Schrödinger’s equation governs its evolution [Schrödinger, 1926]. The quantum bit or qubit, is the quantum
counterpart of a conventional bit. Quantum algorithms use fundamental quantum mechanics principles to tackle
specific problems more efficiently than conventional algorithms. Shor’s method for integer factorization [Shor, 1999]
and Grover’s algorithm for unstructured database search [Grover, 1996] are two of the most well-known quantum
algorithms. Shor’s technique is especially significant because it threatens commonly used cryptographic systems
like RSA, which rely on the difficulty of factoring big numbers [Rivest et al., 1978]. Grover’s technique outperforms
traditional search algorithms by a factor of four, providing considerable benefits for various optimisation issues.

2.3.1 Basics of Quantum Mechanics for Quantum Computing

This section provides a high-level review of quantum mechanics, emphasising its applications in quantum computing
and possible applications in computer-generated holography.

2.3.1.1 Superposition and Entanglement in Qubits

Superposition and entanglement are two important concepts in quantum physics. A quantum system’s ability to
hold many states concurrently is known as superposition. This might be represented by complex-valued wave
functions that outline the probability amplitudes of distinct states [Dirac, 1958]. Superposition applies to qubits and
allows them to exist in a linear combination of the base states |0 > and |1 >. This characteristic allows quantum
computers to do numerous computations simultaneously, laying the groundwork for their remarkable processing
capability [Deutsch, 1985]. Entanglement, a unique quantum correlation [Einstein et al., 1935, Bell, 1964] binds the
states of two or more qubits even when separated by huge distances and may also be observed in qubits. Entanglement is a
critical resource for quantum algorithms and protocols [Jozsa and Linden, 2003, Steane, 1998, Ekert and Jozsa, 1998].

2.3.2 Quantum Gates and Circuits

Because it has the potential to answer difficulties that traditional computers find intractable [Steane, 1998, Williams et al., 1998],
quantum computing has expanded fast in recent years. The theoretical underpinnings of quantum computing are
utilised to design and test quantum computer hardware and algorithms. These models can significantly be used by
computer-generated holography science. This section will go through one significant quantum computing model that
we used as a basic approach as the largely diffuse method to describe algorithms [Montanaro, 2016]: the quantum
circuit model [Yao, 1993]. We use quantum circuits to describe CGH algorithm, and we do not treat alternatives such
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Figure 2.6: Pauli Gates (X, Y, Z) and their effects on a single qubit.

as adiabatic quantum computing [Albash and Lidar, 2018], topological quantum computing [Freedman et al., 2003],
and measurement-based quantum computing [Raussendorf et al., 2003, Briegel et al., 2009]. The most widely studied
quantum computing model is the quantum circuit model [Nielsen and Chuang, 2010]. In a quantum circuit analogous
to a classical circuit, a computation is represented by a series of quantum gates, measurements, initializations of qubits
to predetermined values, and maybe additional operations. DiVincenzo’s criteria [DiVincenzo, 2000] are the minimal
set of operations that a circuit must be capable of carrying out on the qubits to allow quantum computing.

Quantum gates execute unitary transformations on qubit states. Unitary matrices represent these gates and operate
on one or more qubits. Quantum gates, comparable to conventional logic gates, are the building blocks of quantum
computing. They manipulate qubit states via unitary transformations and execute reversible operations on them
[Brylinski and Brylinski, 2002]. The Pauli-X, Pauli-Y, Pauli-Z, Hadamard, and Controlled-NOT (CNOT) gates are
common quantum gates, as shown in Figure 2.6 and 2.7. Quantum circuits are a succession of time-ordered operations
to a qubit’s starting state. The output of a quantum circuit is produced by measuring the ultimate state of the qubits,
which collapses their superposition into a distinct classical value. The quantum circuit model is a valuable tool for
creating quantum algorithms.

Typically, a quantum circuit is shown as a sequence of horizontal lines, with each line representing a qubit. In
between the lines are symbols that symbolise quantum gates. At the ends of the lines, certain symbols are used to
signify measurements. Quantum gates are depicted as symbols on the qubit line and they can include vertical lines to
connect to other qubit lines. Superposition and entanglement between qubits can be achieved and visualised with a
proper combination of gates as shown in Figure 2.8.

2.3.3 Quantum Algorithms

Quantum computing has the potential to alter several facets of computer research fundamentally. CGH is an
interesting and promising area among the many applications that quantum algorithms promise to improve. In
industries like photography, 3D display technologies, and optical information processing, CGH is crucial. Quantum
algorithms provide a unique chance to overcome the computational issues that have long prevented the mainstream
application of CGH techniques. The capacity to rapidly calculate complex holograms has major implications for
the progress of these fields. The junction of quantum computing and CGH is examined in this work, along with
the theoretical underpinnings, prospective benefits, and practical consequences of using quantum algorithms in
this area. Creating quantum algorithms for CGH necessitates a thorough grasp of quantum computing and CGH
fundamentals. Many methodologies have been offered in the literature to describe and analyse light propagation
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Figure 2.7: Control-NOT works on two qubits, control and trigger. In this figure, we show its effects on the four initial
states |00⟩, |10⟩, |01⟩, |11⟩, achieved in this case with states |00⟩ and X gates.

in holography, including scalar diffraction theory [Porter, 1970], Fourier optics [Goodman, 2005], and numerical
simulations [Matsushima and Shimobaba, 2009]. These approaches serve as the foundation for constructing and
analysing holographic algorithms and may be customised to use quantum computing’s unique characteristics. Several
quantum algorithms can be used to CGH-related difficulties. The quantum Fourier transform (QFT) and quantum
discrete Fourier transform (QDFT), for example, are components that may potentially benefit CGH applications that
rely on Fourier optics and related methods. Another interesting area of research in quantum algorithms for CGH is
the development of quantum search and optimisation techniques like Grover’s algorithm and its variations. These
algorithms have shown the potential to significantly accelerate search and optimisation tasks when compared to classical
algorithms, and they could be applied to various aspects of CGH, such as phase retrieval, aberration correction, and the
design of optimal encoding schemes [Fienup, 1982, Gerchberg and Saxton, 1973, Bryngdahl and Wyrowski, 1990]

2.3.3.1 Shor’s Algorithm

Shor’s algorithm developed in 1994, is one of the most significant achievements in quantum computing [Shor, 1999].
This revolutionary algorithm demonstrated that a quantum computer could factor large integers exponentially faster
than the most well-known classical algorithms, with important implications for the security of cryptographic systems
based on integer factorization complexity, such as the widely used RSA cryptosystem [Rivest et al., 1978]. Shor’s
algorithm gave crucial insights into the design and analysis of quantum algorithms, which may be applied to other
fields, such as computer-generated holography (CGH). The quantum Fourier transform (QFT) [Coppersmith, 2002], a
quantum equivalent of the conventional discrete Fourier transform (DFT), lies at the heart of Shor’s method. The
QFT enables effective manipulation of phase information in quantum states, which is critical for Shor’s algorithm’s
success [Nielsen and Chuang, 2010]. On a quantum computer, the QFT has been demonstrated to be more efficient
than its classical equivalent, since it may be completed in 𝑛2 steps, as opposed to 𝑂 (𝑛 log 𝑛) steps for the fast Fourier
transform (FFT), a frequently used implementation of the DFT. This efficiency boost might be used in CGH applications
that rely on Fourier-based approaches, such as Fourier holography and related numerical methods. Shor’s technique
also emphasises the significance of utilising quantum computing’s inherent parallelism and coherence to solve problems
more efficiently than traditional approaches. These qualities might possibly be used in the context of CGH to perform
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Figure 2.8: Bells state written with quantum gates.

parallel calculations of holographic interference patterns, resulting in quicker and more efficient hologram creation
.Furthermore, quantum state coherence may aid in developing innovative holographic techniques that exploit quantum
entanglement and other quantum phenomena inaccessible in classical computing. While Shor’s method has not been
directly applied to CGH, various academics have developed quantum algorithms that may be beneficial for CGH
applications: quantum phase estimation technique, which is a major component of Shor’s algorithm, as a potential
tool for phase retrieval in holography. Another area of interest is the creation of quantum algorithms for solving
linear systems of equations, such as the Harrow, Hassidim, and Lloyd (HHL) quantum algorithm [Harrow et al., 2009].
Under certain situations, this algorithm, which uses QFT and other quantum approaches, has shown the ability to
solve linear problems tenfold quicker than conventional methods. This might allow for the efficient solution of linear
equations originating from the discretization of the diffraction integral or other numerical methods employed in
holography in the setting of CGH.Finally, Shor’s algorithm was critical in proving the potential capabilities of quantum
computing and gave vital insights into the design of quantum algorithms. While Shor’s algorithm has not been directly
used to CGH, its underlying ideas, such as QFT and quantum parallelism, might be used to produce more efficient
holographic algorithms and procedures.

2.3.3.2 Grover’s Algorithm

Grover’s method, developed in 1996 by Lov Grover, is another significant achievement in quantum computing
with possible implications for CGH [Grover, 1996]. Grover’s quantum search technique can search an unsorted
database or solve combinatorial optimisation problems rapidly. It outperforms conventional search algorithms
by needing just 𝑂 (

√
𝑛) queries to identify a target item in a database of 𝑛 elements instead of 𝑂 (𝑛) queries for

classical search algorithms. This acceleration has far-reaching consequences for various computing issues, including
parts of CGH such as phase retrieval, aberration correction, and the construction of optimum encoding schemes.
Many CGH applications rely on phase retrieval, which entails retrieving the phase information of a complex-valued
hologram from intensity measurements [Fienup, 1982]. This topic is frequently framed as a search or optimisation
problem, to find the phase distribution that minimises the error between the measured and calculated hologram
intensities [Wyrowski and Bryngdahl, 1988]. With its quadratic speedup, Grover’s technique might theoretically be
used to rapidly explore the space of possible phase distributions, resulting in a quicker and more accurate phase retrieval
procedure in CGH applications. Another key feature of CGH that might improve from Grover’s approach is aberration
correction. Optical aberrations, or imperfections in the light wavefront, can decrease the clarity of the reconstructed
holographic picture [Kreis, 2006]. Correction of these aberrations frequently entails solving a difficult optimisation
problem to determine the ideal combination of parameters that minimises the distortions [Goodman, 2005].Grover’s
technique, with its inherent speedup for search and optimisation issues, might possibly be used to quickly determine the
ideal parameters for aberration correction, hence improving CGH system performance. Another area where Grover’s
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approach might potentially be used is in constructing optimum encoding schemes for CGH. Encoding strategies are
used to encode complex-valued holograms with a real-valued or binary-valued function that may be projected on a
spatial light modulator (SLM) or other holographic display device. The encoding strategy can significantly influence
the quality and efficiency of the holographic reconstruction, and identifying the best scheme frequently requires
searching or optimising across a vast set of options. Grover’s approach might be used to rapidly search the space
of encoding schemes, perhaps resulting to better holographic reconstructions and lower computing costs in CGH
applications.

2.3.3.3 Quantum Fourier Transform

Quantum Fourier transform (QFT)-based methods is crucial in developing QCGH algorithms. One of the most
important uses of QFT in QCGH could be the calculation of wavefront modifications, providing entanglement between
qubits, which reflects the need for an interference pattern between qubits in generating holograms. In conventional
methods, wavefront modifications require the assessment of Fresnel and Fraunhofer diffraction integrals, which are
computationally costly procedures [Oikawa et al., 2011, Umul, 2005]. Quantum methods for fast Fourier transform
(FFT) have also been developed and might be used to speed up the computation of diffraction integrals in QCGH.
These methods provide a quantum equivalent of the conventional FFT, allowing the Fourier transform to be efficiently
computed on a quantum computer. However, it is crucial to note that implementing QFT-based approaches in
QCGH algorithms offers several obstacles. Implementing QFT may induce defects in the produced holograms due
to the intrinsic vulnerability of quantum systems to noise and decoherence [Nielsen and Chuang, 2010]. To limit
the impacts of noise and increase the quality of the reconstructed holograms, the use of quantum error correction
techniques [Lidar and Brun, 2013] with surface codes [goo, 2023] or toric codes [Andreasson et al., 2019] may be
required.

2.3.3.4 Iterative Quantum Phase Estimation

A fundamental quantum procedure called Iterative Quantum Phase Estimation (IQPE) is used in quantum computer-
generated holography (QCGH) to reconstruct complicated wavefronts. While many quantum algorithms are designed
to run faster than conventional equivalents, IQPE is primarily concerned with improving accuracy. As holography
depends on recording detailed phase information by nature, it is an essential tool for producing high-quality holographic
pictures. The IQPE algorithm, a quantum version of the classical phase estimation algorithm, is designed to estimate
the phase of a quantum state with high accuracy. It is a sequence of the following steps:

1. Initialization: An initial phase estimate is necessary for the IQPE method. This approximation is fed into the
supplementary register during the preparation of a superposition of states in the work register.

2. The IQPE method iteratively improves the phase estimate during iteration. Each cycle includes applying a
controlled unitary operation. Often, the quantum gate in QCGH represents the unitary transformation of interest.
Depending on the desired accuracy, different iterations may be necessary.

3. Following the iterations, the work register is subjected to a quantum Fourier transform (QFT). The output of this
step gives the work register’s most precise estimate of the phase.

4. Measurement: The work register is measured in a computational basis. The result produces an approximation of
the quantum state’s phase.

Since holography necessitates precise phase retrieval, the IQPE algorithm’s ability to provide accurate phase estimates
could be a valid tool or a basis for such a task. The iterative nature of IQPE allows for progressively finer phase
approximations, ensuring that the final holographic image is detailed and accurate.

2.3.3.5 Hybrid Quantum-Classical Approaches

Quantum computers can do complicated computations tenfold quicker than classical computers, making them suited
for computationally heavy jobs like CGH. However, both quantum and conventional resources must be used to fully
realise the promise of quantum computers. The concept of quantum-classical variational algorithms (Figure 3.1),
which combine quantum resources for addressing particular subproblems with conventional optimisation loops, is a
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Figure 2.9: Variational quantum eigensolver architecture of a hybrid classical-quantum computer(Courtesy from
NVidia).

major component of hybrid quantum-classical techniques [McClean et al., 2016, Endo et al., 2021]. QAOA and VQE
are two examples. These algorithms have been applied in various disciplines, including combinatorial optimisation,
quantum chemistry, and machine learning, highlighting the adaptability and promise of hybrid quantum-classical
techniques. Hybrid quantum-classical algorithms may solve optimisation issues faster than conventional algorithms
alone related to CGH, as can happen in stochastic gradient descent approach [Chen et al., 2019].

2.3.3.6 Quantum Machine Learning Algorithms

To create unique algorithms that can outperform conventional approaches in a variety of applications, the disci-
pline of quantum machine learning (QML) integrates the concepts of quantum computing with machine learning
techniques [Biamonte et al., 2017, Schuld and Petruccione, 2018, Schuld et al., 2015]. In the context of CGH, QML
presents a viable approach for enhancing the effectiveness and performance of holographic algorithms and methods
and investigating new uses and capabilities made possible by the quantum computing paradigm. The development of
quantum algorithms for image reconstruction and processing is one possible use of QML in CGH. Deep learning
and other classical machine learning approaches have previously shown the ability to enhance holographic picture
reconstruction by learning to correct for numerous flaws and artefacts in the holographic process [Rivenson et al., 2018].
Quantum algorithms based on the Harrow-Hassidim-Lloyd (HHL) could potentially be used to solve the linear inverse
problems that frequently arise in holographic image reconstruction, potentially providing significant speedup over
classical methods under certain conditions. Moreover, to create more accurate and cheap algorithms for phase retrieval
and aberration correction in CGH applications, QML might possibly integrate quantum search and optimisation
approaches with machine learning models. To learn the complicated links between holographic patterns and the
underlying phase distributions or aberrations, quantum neural networks, which are quantum equivalents of conventional
neural networks, might be used. QML can potentially aid in developing novel holographic methods and applications
that benefit from the special properties of quantum computing. It is possible to utilize quantum machine learning
for producing and reconstructing holograms as some classical neural network approach with previously unheard-of
resolution, sensitivity, and information capacity by combining CGH using quantum entanglement and other quantum
phenomena to improve imaging performance. More studies should be directed towards building QML algorithms
designed especially for CGH applications and investigating the more significant implications of quantum computing
and machine learning for holography and related domains. We list and briefly discuss some of the most important
QML algorithms here:

1. QSVM (Quantum Support Vector Machine): QSVM [Rebentrost et al., 2014] is a quantum variant of the
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traditional Support Vector Machine (SVM) technique used for classification and regression. QSVM transforms
input data into a high-dimensional feature space and solves an optimisation problem to determine the optimum
hyperplane that divides the classes. The quantum version uses quantum parallelism to speed the computation of
the kernel matrix, a fundamental component of SVM.

2. Quantum Principal Component Analysis (QPCA): QPCA [Lloyd et al., 2014] is a quantum approach for
dimensionality reduction and feature extraction, similar to classical PCA. QPCA uses quantum phase estimation
to compute the eigenvectors and eigenvalues of the covariance matrix more efficiently than classical approaches,
allowing for quicker extraction of main components.

3. Quantum Boltzmann Machines (QBMs) [Amin et al., 2018] are a quantum counterpart of conventional Boltz-
mann Machines, which are generative, probabilistic models used for unsupervised learning. QBMs employ
quantum annealing or other quantum optimisation approaches to sample from the system’s energy distribution
more effectively, possibly resulting in faster convergence and more accurate models.

4. Quantum Approximate Optimisation Algorithm (QAOA) and Variational Quantum Eigensolver (VQE): VQE
and QAOA are hybrid quantum-classical algorithms that are used to solve optimisation challenges, such as those
encountered in machine learning5. These techniques employ parameterized quantum circuits to approximate the
ground state of a cost function Hamiltonian, changing the parameters repeatedly via classical optimisation until
convergence [Peruzzo et al., 2014, Zhou et al., 2020].

5. Quantum Neural Networks (QNNs): QNNs [Kak, 1995] are a type of quantum algorithm that is influenced by
classical neural networks. To express the mappings between input and output data, QNNs employ parameterized
quantum circuits. In a way similar to classical deep learning, the parameters are updated using a mix of quantum
and classical optimisation algorithms.
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Chapter 3

Methodology

3.1 From CGH to QCGH

CGH necessitates the resolution of complicated numerical issues, such as phase retrieval and diffraction pattern
calculation, which can be computationally costly. By delivering more efficient methods for tackling these challenges,
quantum computing can potentially treat CGH issues with some advantages. For example, the quantum phase
estimation technique [Kitaev, 1995] might be modified to estimate better the optical wavefront phase in CGH than
conventional approaches. Similarly, the quantum Fourier transform a crucial component of Shor’s algorithm, might
accelerate diffraction pattern calculation [Nielsen and Chuang, 2010]. While the use of quantum computing in CGH
is not yet proposed, recent advances in quantum algorithms and hardware imply that it might become an additional
tool for hologram creation in the near future.

A comprehensive approach that involves issue formulation, classical and quantum algorithm design, implementation
and simulation environment and performance measurements is required to develop and test QCGH algorithms. This
section summarises the techniques employed in the QCGH inquiry, focusing on pertinent research and innovative
techniques. The QCGH problem formulation includes constructing a hologram using a quantum computer’s
computational resources, including designing and implementing quantum algorithms that can mimic classical
algorithm counterparts or be novel. For example, this task may be seen as an optimisation problem, with the
optimisation variables standing in for the hologram parameters and the objective function calculating the difference
between the intended and recreated optical fields. How this problem is framed will determine how well conventional and
quantum algorithms are developed. Iterative Fourier transform algorithms (IFTA) and Gerchberg-Saxton algorithms
(GS) are two design methods for traditional CGH algorithms that have been discussed in the literature. These
algorithms may inspire the design of QCGH algorithms function and offer perceptions into the characteristics and
issues of the holography problem.

To tackle the holography problem more efficiently than conventional methods, quantum CGH algorithm design
necessitates the development of quantum algorithms that use the special properties of quantum computers. The
implementation and simulation environment is essential to assess and contrast QCGH algorithms. For the creation and
testing of QCGH algorithms, current quantum computing platforms like IBM Q 1, Google Quantum AI 2, and Rigetti
Computing 3 offer cloud-based access to quantum processors and simulators [Castelvecchi, 2017]. Additionally,
resources and tools for building and simulating quantum circuits are available through open-source software libraries
like Qiskit 4 and Cirq 5. In the following sections, we depict problem formulation, conventional and quantum algorithm
design, implementation and simulation environment, which are all part of the process for investigating quantum
computer-generated holography.

1https://research.ibm.com/interactive/system-one/
2https://quantumai.google/
3https://www.rigetti.com/
4https://qiskit.org/
5https://quantumai.google/cirq
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Figure 3.1: Complex field from holographic plane to reconstruction plane (Image courtesy from Kaan Aksit Computer-
Generated Holography site7).

3.2 Problem Formulation

The primary goal of QCGH is to reconstruct the phase and amplitude information of a wavefront using quantum
algorithms, as classic CGH does. Reconstructing the complex-valued wavefront, given a series of intensity
measurements, is the goal of the phase retrieval problem in holography. The wavefront can be written as a complex-
valued function, f(x), where x stands for the wavefront’s location. The intensity readings are correlated with the
wavefront’s Fourier transform’s squared magnitude, or |F[f(x)]|2, where F stands for the Fourier transform operator.
Such a complex-valued function is also called "complex field" - and we refer to this term in this study It can be
discretely represented as a grid of points with a position in the 3D space where we associate a complex number (or two
real numbers). In classic CGH, the complex field is achieved as a set of sorted couples of floating point numbers; in
the context of QCGH, we must find a suitable representation that also considers some properties of holography. One
method could be using quantum states for each wavefront point (upon an analogous discretization of the complex field)
to represent the wavefront and store the amplitude and phase information in the probability amplitudes of the quantum
state. Along with the representation of the wavefront, other aspects need to be treated to generate the hologram
with a quantum algorithm; we can take inspiration from the classic IPRA algorithms (as described in 2.2.2.1) to
determine the different stages that our quantum algorithm need to contain. As the first steps into this new approach,
we consider well-established studies with deep historical roots and the opportunity to evolve into various variants
over time, enhancing accuracy while reducing spatial and temporal complexity. We accurately depict the design and
implementation of the GS algorithm, which is a good representative of the iterative phase retrieval methods.

3.2.1 Classical CGH Algorithm Design

In-depth descriptions of the standard CGH algorithm design are provided in this part, emphasising key elements,
including object representation, holographic computing, and optimisation. First and foremost, the object is digitally
represented while creating a standard CGH algorithm. The wavefront with the object’s visual information is often
represented as a complex field in some spatial coordinates, and the complex values denote the amplitude and phase of
the object wavefront. The wavefront is generally considered a plane, following Fraunhofer diffraction representation.
Following that, the hologram computation is performed, which comprises computing the complex-valued hologram,
𝐻 (𝑢), given the object representation, 𝑂 (𝑥). The formula is 𝐻 (𝑢) = 𝐹 [𝑂 (𝑥) ∗ ℎ(𝑥)], where F is the Fourier transform,
the operation is the convolution operation, and h(x) is the impulse response of the diffraction integral. The diffraction

7https://kaanaksit.com/odak/course/computer_generated_holography/
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integral, which relates the object wavefront to the hologram via a linear transformation, is extensively employed in
holographic computation. So, in general, we refer to the hologram, diffraction pattern or complex field in hologram
space as the record of the interference pattern that captures information about the amplitude and phase of the light
field after it interacts with an object. Such terms represent the same entity. Amongst the CGH techniques based on
iterative optimisation approaches, we selected the Gerchberg-Saxton algorithm. Such an approach starts with a guess
for the holographic phase and updates iteratively. The amplitude information of the hologram is normally set to satisfy
the restrictions imposed by some conditions, such as the display devices or manufacturing procedures. On the other
hand, non-iterative CGH techniques, such as the direct binary search (DBS) algorithm and the simulated annealing
algorithm, generate the hologram directly without relying on an initial guess, in addition to iterative optimisation
approaches. Thus, the design of typical CGH algorithms includes three key components: the digital representation of
the object, the holographic computation based on the diffraction integral, and the optimisation process to improve
reconstruction quality and deal with practical constraints.

3.2.2 Gerchberg-Saxton Algorithm

The Gerchberg-Saxton (GS) technique is an iterative phase retrieval method that calculates the phase of an unknown
complex-valued field based on two intensity measurements taken in two separate planes: the hologram plane, and the
image reconstruction plane. Both planes contain the evolving wavefront and are represented mathematically by a
complex field with amplitude and phase that vary with some wave propagation methods. The algorithm begins with
a complex field with amplitude values equal to the calculated wavefront pattern in the hologram plane or an initial
constant amplitude value and random beginning phase values. We replace the complex field’s amplitude with the
incoming light source’s amplitude, which is one if a collimated laser source is utilised. Propagation transmits the
complex field formed with these values to the reconstruction plane. Later, the amplitude of the complex field in the
reconstruction plane is substituted with the amplitude values of the intended target pictures. This new complex field
is returned to the hologram plane using the same propagation equation (but with the opposite direction), where the
amplitude and phase values are modified to the wave propagation mechanism used. The amplitude is again replaced
with the initial value in the hologram plane. This forward and backward propagation process is repeated until the
reconstruction produced by the phase-only hologram is satisfactory. The picture’s complexity that has to be rebuilt,
the desired degree of precision, and the measured data’s signal-to-noise ratio (SNR) are some of the variables that
determine how many iterations the Gerchberg-Saxton (GS) method needs to run. Generally speaking, more iterations
are needed to reconstruct pictures with more complexity or at higher accuracy levels. Nevertheless, overfitting—a
situation in which the algorithm begins to simulate the noise in the measured data rather than the signal—can also
result from increasing the number of repetitions. The GS algorithm often iterates between 10 and 100 times. Some
applications may call for more or fewer iterations. Such a code is in Appendix A.1.

Algorithm 1 Gerchberg-Saxton Phase Retrieval
1: procedure GerchbergSaxton(image_magnitude, num_iterations)
2: Initialize random phase for object object_phase
3: for iteration← 1 to num_iterations do
4: Calculate Fourier transform: object_fourier
5: Inverse Fourier transform: object_estimate
6: Update object phase: object_phase
7: Calculate object magnitude: object_magnitude
8: Replace magnitude: object_fourier
9: Inverse Fourier transform: object_estimate

10: Update object phase: object_phase
11: end for
12: return object_estimate
13: end procedure

GS function takes an input image magnitude (the known magnitude information), and the number of iterations for
the algorithm. We start by initializing a random phase for the object, our initial guess. The magnitude of the initial
guess is the known image magnitude, and then the loop starts:
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Figure 3.2: Comparison of the reconstructed and target values after 50 iterations, with a Qiskit version.

1. We calculate the FT of the object by combining the magnitude with the current phase.

2. We take the IFT to get a new object estimate.

3. the phase is updated using the angle of the complex-valued object estimate.

4. We replace the calculated magnitude with the known image magnitude (that is known), retaining the updated
phase.

5. We repeat the IFT to get a new object estimate and update the phase.

After the specified number of iterations, the function returns the final estimate of the object, which should now
have a phase that better matches the original phase. The example usage at the end demonstrates how to generate a
sample magnitude image, run the Gerchberg-Saxton algorithm, and visualize or save the retrieved image. Figure 3.2
shows the original image, the diffraction pattern generated and the reconstructed image.

3.3 Gerchberg-Saxton and complex Transport Function
At its core, the Gerchberg-Saxton algorithm relies on several fundamental parameters to perform its reconstruction,
following a more realistic model. In the next implementation (in which we use Odak 8 [Akşit and Kavaklı, 2023,
Kavaklı and Akşit, 2022, Kavakli et al., 2022] toolkit for Python), we start by defining the wavelength of the incident
light, a critical component in optical systems. The algorithm leverages this information to calculate the wavenumber,
aiding in the subsequent computations. Other vital parameters encompass spatial resolution, represented as pixel
dimensions, and the propagation distance within the optical system. These parameters, fine-tuned to the specifics
of the problem, are instrumental in the image reconstruction and holography processes. The code for this section
is in Appendix A.2. We start with preparing the target image, the focal point of the reconstruction process.
Employing PyTorch, an open-source machine learning framework, we load the image and seamlessly transform it
to meet the algorithm’s prerequisites. Initially, the image is resized to match the desired resolution, ensuring the
reconstruction process adheres to the intended dimensions. Furthermore, grayscale conversion is performed, yielding
a monochromatic image representation. This transformed image is converted into a PyTorch tensor, ready for the
forthcoming computational steps. The core of the Gerchberg-Saxton algorithm unfolds iteratively. Holograms are
generated over a predetermined number of iterations, and the reconstruction process is simulated with mathematical
precision. The algorithm relentlessly updates the amplitude and phase of the holograms in each iteration. Finally, the
implementation offers a window into the algorithm’s capabilities by rendering the reconstructed image and holograms.
This visual representation aids in comprehending the results and assessing the effectiveness of the Gerchberg-Saxton
algorithm. The final image, in this case with a more detailed model, is depicted in Figure 3.3.

3.4 Quantum CGH Algorithm
The quantum version of the iterative Fourier transform algorithm for CGH can be split into the same stages as the
classic version. In addition, it is necessary to understand the representation of some entities essential for diffraction

8https://github.com/kaanaksit/odak
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pattern creation and image reconstruction. Firstly, we remark on the difference between the classic version of GS and a
possible QGS:

Complex Field Representation Classical Gerchberg-Saxton (CGS): In the classical version, the complex field is
represented as a 2D array of real numbers (as complex numbers). Each array element corresponds to a point in the
complex plane, capturing both amplitude and phase information.
Quantum Gerchberg-Saxton (QGS): In the quantum version, the complex field could be represented using quantum
states. Quantum states, such as qubits or quantum registers, could store the amplitude and phase information in a
quantum superposition, allowing for the quantum properties of superposition and entanglement to be utilized.

Interference Pattern CGS: The classical version of the algorithm calculates the interference pattern, which
represents the intensity distribution resulting from the object’s superposition and reference waves. The interference
pattern is usually computed using a Fourier transform of the complex field.
QGS: In the quantum version, interference patterns could be calculated using quantum Fourier transform operations,
or with operations that entangle qubits. Quantum Fourier transforms are designed to process quantum states and could
simulate interference patterns by manipulating the quantum states corresponding to the object and reference waves.

Transport Equation CGS: The transport equation in the classical version describes the propagation of the complex
field from the object plane to the hologram plane or to the hologram plane and the image reconstruction plane and
back. It involves convolution operations and phase retrieval steps to update the complex field iteratively.
QGS: In the quantum version, simulating the transport equation could involve quantum gates for phase shifting and
controlled operations for interference calculations. Quantum gates and entanglement can be leveraged to perform the
transport equation efficiently.

Iteration Process CGS: Classic Gerchberg-Saxton iterates between the hologram and reconstruction planes, updating
the complex field in each iteration. The algorithm repeats this process until a convergence criterion is met.
QGS: The quantum version of Gerchberg-Saxton would also involve an iterative process where quantum operations
update the quantum states representing the complex field.

3.4.1 Quantum Gates and Techniques for Quantum Gerchberg-Saxton Algorithm

In this section, we try to define some quantum information tools when dealing with quantum circuit environments
necessary to implement specific processes in QGS.

Superposition Gate (Hadamard - H): Purpose: The Hadamard gate is used to create a superposition state. For a
single qubit, applying H transforms the qubit from the |0〉 state to an equal superposition of |0〉 and |1〉 states.
Application: In the Quantum Gerchberg-Saxton Algorithm, superposition can be useful when initializing the quantum
states representing the complex field, allowing for quantum parallelism during calculations.

Figure 3.3: Comparison of the reconstructed and target values after 50 iterations, with a Odak version.
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Entanglement Gate (CNOT, or other controlled gates): Purpose: The CNOT (Controlled-NOT) gate creates
entanglement between two qubits. When the control qubit is in a superposition, it entangles the target qubit’s state
based on the control qubit’s state.
Application: In the algorithm, we can entangle qubits to simulate the interference between the object and reference
waves, creating interference patterns.

Phase Kickback (CZ and H): Purpose: The CZ (Controlled-Z) gate creates phase kickback by transferring the
phase information from one qubit to another. We can manipulate the phase information by applying Hadamard gates
before and after.
Application: Phase kickback can be used to simulate the propagation of waves and reconstruct the complex field in
quantum holography.

Quantum Phase Estimation (H, U3, and CX): Purpose: Quantum Phase Estimation is a crucial technique
for estimating phase information. H prepares qubits in superposition, U3 gates perform unitary transformations
representing the hologram propagation, and CX gates apply controlled operations.
Application: these gates and techniques are employed to estimate the phase of the complex field iteratively.

Quantum Fourier Transform (H, Controlled-Phase, and Measurement): Purpose: The QFT is essential for
frequency domain transformations and pattern recovery. H gates prepare qubits, and controlled-phase gates apply
phase shifts.
Application: In quantum holography, QFT is useful for simulating interference patterns and transforming between
spatial and frequency domains. Measuring the result yields the recovered holographic data.

3.4.2 Designing the Quantum Gerchberg-Saxton Algorithm

The Gerchberg-Saxton algorithm could be designed with the following challenges and implemented using qubits and
Qiskit. The first step is representing the complex field in a quantum algorithm structure. The complex field could be
represented by a set of qubits that can be grouped in a quantum register, with the qubit states encoding the amplitude
and phase values. For example, 𝜃 and 𝜙 rotation gates could encode amplitude and phase. The 𝜃 rotation gate (𝑅𝜃),
is a quantum gate that rotates the state of a qubit around the Bloch sphere, acting on the amplitude. The 𝜙 rotation
gate (𝑅𝜙), is another quantum gate used for single-qubit rotations, introducing a phase shift to the quantum state of
the qubit without changing the probability amplitudes of the states. In this way, when using more qubits, the real
and imaginary components could be directly encoded in qubit basis states. Additional ancilla qubits may be needed
for intermediate values. Secondly, tackling the propagation mechanism: such a step essentially performs a Fourier
transform on the complex field. Quantum Fourier transforms could achieve this propagation between wavefronts
represented by qubits registers. Thirdly, we need to translate propagation equations into unitary transformations, such
an approach will simulate the wavefront propagation (and backpropagation) from hologram plane and reconstruction
plane. Conditional operations like CNOTs and Toffolis could implement setting amplitude or phase constraints. Lastly,
all the processes must be wrapped with a cycle acting as an iterative approach. The iterative optimization process
aims to minimize the error between the target and the reconstructed state. It could formulate a variational quantum
algorithm, updating parameters to minimize loss: loss calculation and classical optimization loop around quantum
propagation steps. To detail how to pursue our goal, the following fundamental actions need to be taken:

• Mapping continuous math onto discrete qubit operations.

• Achieving high fidelity coherent transformations.

• Information exchange between classical and quantum steps.

• Quantifying if/where quantum speedups can be gained.

In the initial approach of the QGS algorithm, we can create two complex planes, one for the hologram and one for
the reconstruction, and suppose that the wavefront moves iteratively from the hologram plane to the reconstruction
plane. We allocate two sets of qubits to represent the requisite complex fields, and we internally entangle the qubits
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at each complex plane. We may map the field intensities by setting the amplitude of the qubits to be measured in
the |1⟩ state, and the phase of the qubit represents the field phases. We can achieve propagation for all qubits by phase
shifting. Phase shifting, entanglement, and superposition can all be used to create interference patterns. Although a
series of regulated and Hadamard gates can accomplish the same goal, QFT is a strong contender to provide such
features. After that, the circuit is repeated for the required number of times with the updated amplitude and phase data
saved in the quantum states and arranged in registers.

3.5 Quantum Fourier Transform for Gerchberg-Saxton
The QFT creates interference patterns and manipulates quantum states as part of the algorithm’s iterative process. The
QFT acts as a change of basis, transforming computational basis states into equally weighted superpositions of all
basis states. When measured, this results in interference effects, as the amplitudes can constructively or destructively
interfere. The specific interference pattern depends on the number of qubits and measurements performed. Additionally,
the controlled phase rotations in the QFT entangle the target qubit with the control qubit. This gradually builds up
entanglement across all the qubits in the register. The QFT can be implemented using a variety of quantum circuits.
The Hadamard gate, a single-qubit gate, sets a qubit in a superposition of the |0⟩ and |1⟩ states. A Z gate is applied to
the second qubit by the controlled-Z gate, a two-qubit gate when the first qubit is in the |1⟩ state. In Appendix A.3 we
provide the Qiskit example of the QFT circuit for a 4-qubit register. A quantum state will be in a superposition of all
potential Fourier transform basis states after the QFT circuit has been applied to it.

3.6 Simulation Environment
In this section, we describe the software packages and tools utilized to study GS algorithm in CGH and the
implementation of QGS circuit in QCGH.

3.6.1 Qiskit

Qiskit is an open-source Python library enabling researchers, educators, and developers to interface with quantum
computers at the circuit level. Quantum circuits serve as executable programs defining qubit behaviour on quantum
processors. Qiskit provides tools for constructing, manipulating, and executing quantum circuits to make practical
quantum computing accessible. Fundamentally, Qiskit represents quantum computations as circuits comprising
sequences of quantum logic gates applied to qubits. It offers classes for building and visualizing quantum circuits,
leveraging Python’s mature numerical and scientific computing stacks through integration with NumPy and SciPy.
Qiskit’s circuit model enables composing, transpiling, and optimizing circuits on quantum processing units. For circuit
execution, Qiskit grants access to simulated backends for exact and noisy emulation and real quantum processors via
the cloud. Its provider mechanism allows connecting with resources from partners across the quantum computing
industry. Qiskit provides a unified interface to manage time allocation, job submission, and result retrieval across
accounts and hardware providers. Building upon this low-level circuit foundation, Qiskit provides higher-level tools for
constructing quantum programs and applications, including domains like chemistry, optimization, finance, and machine
learning. Coupled high-level programming enables integrating quantum as co-processors for hybrid classical-quantum
workflows: visualization, monitoring, and debugging tools aid in developing large quantum codebases. Qiskit’s
extensible open-source design fosters an ecosystem of tools, algorithms, and hardware support. It empowers users
to engage directly with quantum circuits to characterize, understand, and design around noise, errors, and device
imperfections critical to applied research.

3.7 Circuit Creation
The quantum Gerchberg-Saxton (QGS) algorithm represents the first attempt to leverage quantum computing principles
to tackle a classic problem of computational holography. At its core, the Gerchberg-Saxton algorithm is used for phase
retrieval, a process critical in reconstructing information.

We assemble the algorithm considering the different stages mapped on the quantum counterpart. The QGS
algorithm utilizes quantum circuits to manipulate quantum states representing elements in the complex field, performing
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Figure 3.4: Quantum circuit that aims to mimic Gerchberg-Saxton algorithm. The QFTs that entangle the qubits in
quantum registers representing complex planes and phase change acting as transport equation are visible. Such a
circuit visualises only three iterations.

operations parallelising certain aspects of the interference process. Unlike the classical Gerchberg-Saxton algorithm,
the quantum version introduces quantum gates, and quantum Fourier transforms.

In a quantum Gerchberg-Saxton iteration, quantum registers initialise quantum states representing the complex
field in the holographic plane with initial amplitudes and phases. These quantum states are then propagated between
the hologram and reconstruction planes using quantum gates, creating interference patterns. In this version, we
simplified different stages, such as the propagation, even if in a later section, we propose a FresnelTransportGate as a
starting point for a more complex solution for the wavefront propagation. The target intensities in the reconstruction
plane are set during each iteration. Finally, quantum measurements extract the amplitudes or the phases from the
quantum state. We identified different challenges in generating the circuit: firstly, we must map intensities into angles
for the qubits. Secondly, we need a way to set 𝜃 rotations, between every unidirectional propagation cycle. Moreover,
we should define a propagation function, and finally, we need to provide a mechanism that excludes wrong results from
the outcome. We provide the code in the Appendix A.4

In our circuit, as depicted in a four qubits version in Figure 3.4, we defined three sections that appear to be the
stages in the Gerchberg Saxton algorithm: initialization phase, interference creation, and propagation. The last two
phases are then repeated until the final generation of the diffraction pattern and reconstruction. Here, we describe the
functionalities mapped into the functions defined in the code. We have developed the script by established software
development principles and best practices, aiming to ensure modularity and facilitate the code’s comprehensibility.

• gerchberg_saxton(iterations): This is the main function implementing the quantum Gerchberg-Saxton algorithm.
It sets up quantum registers for hologram, reconstruction, and eventually classical registers for measurement
results. It initializes target intensities, initial intensities, and initial phases. The function then initializes the
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circuit by setting the initial intensities and phases and propagates information back and forth between the
hologram and reconstruction planes for a specified number of iterations. It simulates the quantum circuit and
extracts amplitudes or phases based on the phase flag. We swap the quantum register at each iteration as
modifying the previous registers becomes the new complex field.

• initialize_amplitudes_and_phases(qc, qubits, intensities, phases): This function initializes the qubits to |0〉 and
sets their amplitudes based on the provided intensities and phases.

• propagates (qc, from_qubits, to_qubits): This function creates entanglement with QFT and propagates
information from one set of qubits to another by applying phase shifts and controlled-Z gates between the
qubits. We select as a naive solution a constant phase, but a more careful modelling would accept parameters to
calculate the right phase for each qubit.

• set_intensities(qc, qubits, target_intensities): This function sets the intensities of the qubits based on the target
intensities.

The code then includes functions for estimating amplitudes and phases via Bloch sphere functions. To compare
this quantum version of the code with the classic Gerchberg-Saxton algorithm: The code initializes quantum states
with amplitudes and phases in the hologram plane, that correspond to the initialization in GS, where the hologram
plane is set with constant amplitudes and phase is random. After applying QFT that makes a correlation between all
the qubits in the complex plane, it iteratively propagates these states to the reconstruction plane and back, applying
phase shifts and controlled gates to simulate interference alternating QFT and inverse QFT. That corresponds to GS
algorithm where FFT is used for interference pattern, and phase modification is applied according to parameters such
as wavenumber, distance, wavelength, etc... In our version, we simplify such a section, but we describe and realise a
FresnelQuantumGate that paves the way for future, more complex quantum propagation models. At the end of each
forward propagation (hologram to reconstruction plane), the target intensities in the reconstruction plane are set as the
GS algorithm recommends. Finally, we extract the amplitudes or phases so that a diffraction pattern can be used for
image reconstruction. Thus, we identify some key differences from the classic Gerchberg-Saxton algorithm:

The classic algorithm is entirely classical, while this code uses a quantum circuit for phase retrieval. The classic
algorithm is well-established and widely used in optics, whereas this quantum version is experimental and exploratory.
This quantum version involves quantum gates, QFT, and Bloch sphere representation, which is not part of the classical
algorithm. The quantum version may take advantage of quantum parallelism in some way, potentially providing
speedup compared to classical methods. Overall, this code represents an attempt to apply quantum principles to a
classic problem in holography. However, further refinement and analysis are required to determine the practicality and
advantages of such an approach.

3.7.1 Fresnel Transport Gate

A tailored quantum gate called the FresnelDiffractionGate is made to mimic the process of Fresnel diffraction, which
is a key concept in wave optics. The two essential factors characterising this gate are the wave number (k) and the
propagation distance (distance). These characteristics have a direct relationship to Fresnel diffraction as a physical
process.
Wave Number (k): this parameter of Fresnel diffraction, serves during propagation applied to the phase variations, and
the gate must be able to apply a quantum rotation (Ry) based on this wave number. Propagation Distance (distance):
Fresnel diffraction occurs as a wavefront travels from one plane to another, and distance is important. This gate
incorporates the distance parameter to account for the phase shifts. The quantum operations within the gate, specifically
the Ry rotation and the Hadamard (H) gate, simulate the wavefront’s transformation through this distance.
By incorporating these parameters, the FresnelDiffractionGate bridges the quantum circuit to the physical process of
Fresnel diffraction, enabling the quantum simulation of this optical phenomenon. This gate is a testament to how
quantum computing can be applied to model and understand complex physical phenomena more accurately.

3.7.2 Visualization

We visualise the states (with bar charts for the decider quantities) of such a quantum system using Qiskit’s Bloch
sphere data visualisation module. We compute and display the amplitudes, phases, and goal intensities for a set of
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Algorithm 2 Quantum Gerchberg-Saxton Algorithm
Input:

Number of qubits
Iterations
Target intensities
Initial intensities
Initial phases

Output:
Extracted phases/amplitudes

function GerchbergSaxton

Initialize quantum registers and classical registers

Create a quantum circuit

for each iteration do
Initialize amplitudes and phases for the hologram plane

Propagate from the hologram to the reconstruction plane

Set target intensities in the reconstruction plane

if last iteration then
Break

end if
Propagate from the reconstruction to the hologram plane

Set target intensities in the hologram plane

end for
end function
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iterations. The Bloch sphere is an effective tool for comprehending the quantum states and how they change during the
GS algorithm. We can see how the algorithm is doing as it refines the quantum state to meet the goal intensities by
displaying these states visually. We provide the code in Appendix A.5.
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Chapter 4

Discussion

4.1 Considerations on Gerchberg-Saxton algorithm

To summarize, the GS algorithm is an iterative approach for determining the phase of a complex-valued wavefront
from two intensity measurements taken in different planes. The algorithm operates by alternating two steps: the first
one is the propagation of the complex field from the hologram plane to the reconstruction plane, and the second is the
rectify of the complex field to match the target intensity. The process starts with a random guess for the hologram
phases. The propagation step involves taking the complex field’s Fourier transform, propagating the Fourier amplitudes
through a system defined by its transfer function, and then taking the inverse Fourier transform. The error correction
step is carried out by comparing the propagated field intensity to the second intensity measurement. The iterative
process that involves such steps minimises the error between the target image and the reconstruction image. The GS
algorithm is an effective phase retrieval tool. It is relatively easy to apply and is frequently very effective. However, the
technique might be sluggish to converge and susceptible to measurement noise. The Gerchberg-Saxton algorithm has
the following advantages: easy implementation, quite effective, phases determination of a complex-valued wavefront
from two intensity measurements. Anyway, it suffers from the following drawbacks: slow convergence, susceptibility
to noise, and initial guess dependency that might be problematic for convergence.

4.2 Complex Field in Holography

CGH represents the complex field using a series of pairs of real numbers, each representing the amplitude and phase
of a single point in the complex field. In the quantum iteration of the process, a collection of qubits represents the
complex field. The field’s amplitude at each point represents the chance that a qubit is in the |1⟩ state, and the qubit’s
phase is utilised to indicate the field’s phase at each point.

The field’s propagation is implemented via a series of quantum gates. Using X or Y gates for probabilities and
Z gates for phases, the qubits are rotated into a superposition of the |0⟩ and |1⟩ states. To propagate the field, we
employed QFT, and phase shift gates were applied to the qubits in a certain order.

To measure the qubits in the complex field, the conventional method is the projective measurement (tomography)
using the |0⟩ / |1⟩ basis. Depending on the projective measurement, the qubits are projected onto the basis. However,
in our implementation, we chose to use Bloch sphere Qiskit functionalities, as in the previous case, measuring directly
destroys the phase value. A possible alternative solution is to measure on a different basis, such as circular (Y)
or Hadamard (X). Measuring the complex field can be achieved in Qiskit, by doing a quantum state tomography,
achievable by using the ’state_tomography_circuits’, ’StateTomographyFitter’ functions.

Before the quantum version of the GS method can be employed in real-world applications, a few issues need to be
resolved: The algorithm is intricate and necessitates several qubits, depending on the resolution of the complex field
we want to achieve. Due to this, applying the procedure on an existing quantum computer is challenging. Compared
to the traditional version, the algorithm needs more complex implementations of the propagation step. We started
implementing a FresnelDiffraction gate that takes input parameters such as the distance from the planes and the
wavenumber. However, propagation is a highly complicated topic and convoluted methods were developed. In addition,
the algorithm is noise-sensitive. The GS algorithm’s quantum variant is more noise-sensitive than its conventional
counterpart. The qubits are more prone to errors, so numerous error correction strategies have been developed. The
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quantum variant of the GS algorithm is a potential new method for CGH despite these difficulties. It might speed up
the computation, and the quantum version of the GS algorithm will be more useful as quantum computers get stronger.

4.2.1 Comparison Quantum-Classic

Quantum algorithms claim some advantages over the classic algorithm, supported by a quantum hardware capable of
achieving superposition and entanglement, leveraging resources not present in classic hardware.
Parallelism: Quantum computers inherently process multiple states simultaneously through superposition, allowing
faster manipulation of quantum states than classical sequential processing.
Efficient Linear Algebra: Quantum gates efficiently perform complex linear algebra operations, such as phase
rotations and quantum Fourier transforms. These operations are crucial in Gerchberg-Saxton, potentially offering
speedup over classical matrix operations.
Speedup for Quantum Transformations: Quantum Fourier transforms can be performed in logarithmic time on a
quantum computer, whereas classical algorithms require polynomial time, providing an advantage for large data sizes.
Quantum Phases: Quantum algorithms naturally handle phase information, which is crucial in algorithms like
Gerchberg-Saxton. Quantum phase rotations are precise and can be efficiently applied.
Quantum Memory: Quantum states are stored in quantum bits (qubits), enabling exponential data representation
compared to classical bits. This is advantageous for large datasets.
Quantum Interference: Quantum states can undergo constructive or destructive interference, facilitating complex
amplitude manipulations that are hard to emulate classically.
Potential Speedup: While the quantum advantage is problem-specific, quantum algorithms can potentially provide
exponential speedup for specific problems, such as those involving Fourier transforms.
On the other hand, we have longer experience with classic algorithms, and there are some advantages over quantum
computing:
Accessibility: Classical computing is mature and widely accessible, while quantum computers are still in their infancy.
Developing and debugging algorithms on classical platforms is currently more straightforward.
Universal Problem Solving: Classical computers can solve a broader range of problems due to their general-purpose
nature, while quantum computers excel at specific tasks that exploit quantum phenomena.
Cost and Resources: Currently, quantum computations are resource-intensive, requiring specialized hardware and
noise mitigation techniques. Classical computations are more cost-effective for many problems.
Precision and Stability: Classical computations are more stable and less prone to errors than quantum computations,
which are sensitive to noise and decoherence.
Interoperability: Classical software libraries and languages are well-established and interconnected, simplifying
software development, integration, and reuse.

4.2.2 Results

Our circuit can run on a laptop machine with an Intel I9 CPU with 64 GB of RAM, and we tested on four qubits. A
circuit with nine qubits was created, but the result is not provided. The results show some reconstructions correct after
a variable number of iterations, as displayed in Figure 4.1. The qubit phase changes accordingly with the code provided,
which can be considered a starting point to improve both the interference pattern and the propagation mechanism.
Indeed, in this study, we aim to step into such a new field. As discussed in the next section, as part of improving such
stages of the GS algorithm, different approaches can be explored, like other iterative phase retrieval algorithms or
even single-shot diffraction pattern generation. Although the algorithm we created can be scaled by modifying one
parameter, we noticed that the quantum simulation memory requirement increases quickly, saturating the memory.
Simultaneously, in the classical computer, a longer time is required to produce the outcomes. Future work consists of
improving both the circuit and the measurement, and eventually testing on quantum hardware via IBM account.
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Figure 4.1: Comparison between amplitudes and target intensities after 35 iterations.

Figure 4.2: Visual representation of SGD approach. (Courtesy image from Feng Wang blogpost1))

4.3 Future Works

4.3.1 Stocastic Gradient Descent

In GS alternatives, the main data structures are the same, as transport equations must update complex planes, but
there are different approaches to creating the right diffraction pattern. For example, we can consider such an approach
as a minimization of a loss function that calculates the difference between the target and reconstruction image. An
iterative optimisation process is the stochastic gradient descent (SGD). The SGD algorithm starts with a purely
arbitrary assumption for the reconstruction picture. The method then moves toward the loss function’s negative
gradient to update the reconstruction image repeatedly. Because the SGD technique is stochastic, it does not take a
deterministic route to the loss function’s minimum. The SGD algorithm is an effective tool for reconstructing images.
This process is repeated until the loss function converges to the specified tolerance. The technique can, however, be
sensitive to measurement noise and problematic to converge. In addition, the outcome depends on initial conditions,
and the optimal solution is not guaranteed. A single intensity measurement may be utilised to rebuild pictures using
the SGD approach (Figure 4.2). In contrast, conventional image reconstruction techniques call for several intensity

1https://towardsdatascience.com/https-medium-com-reina-wang-tw-stochastic-gradient-descent-with-restarts-5f511975163
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measurements. Recreating pictures from noisy data using the SGD method is also possible. This makes it a technology
with much potential for holographic imaging in practical settings. Given this benefit and drawback of SGD and
considering that it is an algorithm used massively in machine learning, a possible quantum-based approach could
consider the application of recent quantum machine learning algorithms such as quantum stochastic gradient descent
(QSGD) [Sweke et al., 2020]. In Sweke’s work, for example, is presented a version in which SGD is used in a hybrid
quantum-classical system. In Appendix A.6 is provided SGD applied to holography.

4.3.2 Quantum version of SGD

The quantum version of the stochastic gradient descent algorithm is similar to the classical version. Still, it uses
quantum circuits to represent the complex field and the loss function. QSGD minimises a cost or loss function that
quantifies the difference between the quantum circuit’s predictions and target values. The quantum circuit’s parameters,
represented by a vector 𝜃, must be optimized to minimize this cost function. It employs stochastic optimization. It
processes training data in mini-batches to approximate the gradient of the cost function. Each mini-batch contains a
subset of the training data. In the initialization stage, the quantum circuit with parameters 𝜃 is used to prepare quantum
states, compute quantum observables or perform other quantum computations. The outcomes of these computations
are used to estimate the gradient of the cost function to the parameters 𝜃. QSGD leverages the principles of quantum
measurement to estimate gradients. The quantum circuit is prepared in a certain state, and measurements are performed.
The measurement outcomes, often represented as probabilities or expectation values, provide information about the
gradient components concerning the parameters 𝜃. Then, it updates the parameters 𝜃 based on the estimated gradient
information. The update step is similar to classical SGD. The learning rate and the gradient sign are used to update
each parameter. The algorithm repeats until a stopping criterion is met. This can be a maximum number of iterations,
a convergence threshold, or other criteria defined by the user. Such workflow is analogous to the GS loop and so can
replace the current implementation with a reduced effort. However, as such an algorithm runs on quantum hardware, it
inherits a susceptibility to noise and errors. Therefore, quantum error mitigation techniques are required to reduce
noise effects on the estimated gradients. We provide in Appendix A.7 with a possible approach of quantum SGD in
Qiskit.

4.3.3 Odak Library for CGH and Odak Quantum Plugin

Odak is an open-source Python library that enables research and development in CGH. A key capability Odak provides
is the simulation of light propagation and diffraction effects, which are integral physical phenomena underlying
holographic reconstruction. At the core of Odak is the odak.wave module, which implements angular spectrum
propagation of monochromatic coherent light waves between parallel planes. This allows for the modelling of
diffraction and interference effects critical to CGH. Odak.wave natively represents complex optical field data using
NumPy arrays, enabling integration with Python’s ecosystems for scientific computing and automatic differentiation.
Key components of odak.wave include functions to propagate wavefields at specified distances, apply aperture functions,
model lens effects, and interface field data with common image representations. Odak.wave permits flexible definitions
of parameters, including wavelength, sampling rates, and physical display dimensions. Upon this diffraction simulation
framework, Odak incorporates tools for calculating optimal hologram patterns to reconstruct desired 3D scenes. This
includes the generation of point light distributions representing the scene. Light from these reconstructed points can
be back-propagated to a hologram plane, aiming to determine a phase-only hologram pattern that best reconstructs
the scene upon forward re-propagation. Odak provides common objective functions, such as maximizing power
in reconstruction peaks while minimizing background noise. Gradient-based optimization leveraging odak.wave’s
differentiable propagation can efficiently solve for the optimal scene-representing hologram. To enable applied CGH
research, Odak integrates with several physical holographic display platforms. A key target display is the HoloPlay
module, which accepts phase-only holograms to reconstruct mid-air 3D scenes. Odak provides functions to interface
optimized holograms with HoloPlay’s input stream for real-time video display. Support for phase-only spatial light
modulators like those from Meadowlark Optics is also provided.

To enhance the capabilities of Quantum Stochastic Gradient Descent (QSGD) and facilitate seamless integration
with quantum machine learning frameworks, we can explore the possibility of introducing a "Quantum Odak Plugin."
This plugin would be designed to leverage the strengths of both QSGD and the Odak framework, which employs
tensors in PyTorch, a popular deep-learning framework. The proposed plugin could be implemented using a dedicated
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library called TorchQuantum, which would provide the bridge between quantum circuits and tensor-based operations.
By integrating TorchQuantum into Odak, we would enable the seamless use of quantum circuits within the PyTorch
ecosystem, mapping Gerchberg Saxton and SGD algorithms to their quantum versions.

4.3.4 TorchQuantum

TorchQuantum is an open-source library that facilitates the development of quantum machine learning models by
integrating quantum circuits into PyTorch’s deep learning ecosystem. It enables the construction of hybrid quantum-
classical neural networks using PyTorch’s familiar interfaces. At its core, TorchQuantum provides QuantumCircuit
modules that encapsulate parameterized quantum circuit objects for usage in PyTorch neural networks. Common
quantum logic gates are implemented to construct variational circuits, integrating PyTorch’s automatic differentiation
mechanisms to support the optimization of quantum parameters through backpropagation. For the execution of
quantum circuits, TorchQuantum integrates with several quantum simulators and real quantum hardware, including
IBM Quantum systems. Native PyTorch integrations are included for quantum emulators like Aer, PyTorchQVM, and
PennyLane. Using TorchQuantum’s interfaces, developers can leverage familiar PyTorch workflows for data loading,
loss calculation, optimization, and model checkpointing to train quantum models. TorchQuantum incorporates common
quantum machine learning applications, including quantum classifiers, autoencoders, and generative models, to provide
starting points for developing novel quantum neural network architectures. Pre-built datasets and benchmarking tasks
tailored for quantum machine learning are also provided. While nascent, TorchQuantum aims to promote research
and education in quantum machine learning by lowering barriers to exploring quantum-enhanced deep learning
techniques. It brings quantum circuits into GPU-accelerated training regimes familiar to deep learning practitioners.
TorchQuantum is supported by active open-source community building integrations and applications.

4.3.5 Future Applications

Because of its promising skills in handling complicated and computationally heavy tasks, quantum computer-
generated holography (QCGH) has the potential impact on a variety of sectors. This section investigates the
prospective applications of QCGH and future research paths in this sector, stressing the foundations that are
valuable for these goals. In addition to 3D displays [Tay et al., 2008, Pan et al., 2015], and augmented reality (AR)
systems [He et al., 2019, Li et al., 2016, Maimone et al., 2017], one of the key uses of QCGH is in the presentation
and storage of information. Holography allows for the storing and retrieval of three-dimensional (3D) information,
with capacity and resolution improvements over typical two-dimensional (2D) approaches [Psaltis and Burr, 1998,
Hesselink et al., 2004, Burr et al., 2001]. The principle behind this technology can be split into different required
stages:

1. Laser Light Source: holographic data storage typically uses a laser light source, (red, green, or blue). It provides
the coherent light required for recording and retrieving holographic data.

2. Spatial Light Modulator (SLM): An SLM encodes and modulates data onto the laser beam. It controls the light’s
phase and amplitude to create the interference patterns necessary for holography. The data, often in binary
pixels (0s and 1s), is encoded on the SLM.

3. Beam Splitter: The beam is split into two beams—the reference beam and the data beam. The reference beam is
directed to illuminate the entire storage medium uniformly, while the data beam encodes the SLM information.

4. Storage Medium: The storage medium is typically a thick, photosensitive material like a crystal or a polymer.
This medium can record and store the holographic interference pattern created by the data beam and the reference
beam.

5. Hologram Formation: When the data beam interferes with the reference beam on the storage medium, a 3D
interference pattern or hologram is formed. The intensity and phase variations of the light at each point in the
medium are recorded as a hologram. This process occurs for multiple data pages in the same volume of the
storage medium.

6. Multiplexing: that means that multiple holograms (representing different data pages) can be stored at different
angles (changing reference beam angle) within the same volume of the storage medium.
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7. Data Retrieval: To retrieve data, a similar laser light source is used to illuminate the storage medium with the
reference beam. This reconstructs the interference patterns and allows the data to be read. The data pages can
be selectively retrieved by adjusting the angle of the reference beam.

QCGH can expand on these capabilities by allowing for the creation of more efficient and adaptable holograms,
perhaps leading to improvements in high-density high-transfer data storage [Orlov et al., 2004]. Another possible
use for QCGH is optical metrology and sensing. Holographic methods have been used to measure physical
quantities precisely and detect phenomena such as temperature, tension, and strain [Asundi, 2011, Bennett et al., 1976,
Paturzo et al., 2018]. The use of QCGH in various applications can increase accuracy, sensitivity, and speed, hence
driving developments in domains like material research, structural health monitoring, and biomedicine. In addition,
QCGH has potential uses in security and authentication. Because of their intricate patterns and the complexity
of counterfeiting [Vather et al., 2018, Spagnolo and De Santis, 2011, Cheng et al., 2014], holograms are frequently
utilised as security features in banknotes, passports, and other precious things [Nomura et al., 2005]. QCGH can allow
the construction of more advanced and secure holographic features, boosting the security against counterfeiting and
fraud, by harnessing the computing capabilities of quantum computers. Several additional research avenues should be
examined to fully realise the promise of QCGH in these applications. First, developing efficient and effective hybrid
quantum-classical holographic algorithms is critical to reaping the benefits of quantum computing. As indicated in
the preceding section, hybrid quantum-classical techniques provide a promising path for this purpose, and additional
study should be conducted to investigate their potential in the context of QCGH. Second, QCGH algorithm scalability
should be considered, since it is critical to their actual implementation. Quantum computers with more qubits and
lower error rates are required to solve more difficult holography issues. At the same time, developing fault-tolerant
quantum algorithms and error correction techniques will be critical to providing scalable QCGH solutions. Third,
investigating innovative quantum computing paradigms and hardware designs may open up new avenues for QCGH.
Continuous-variable quantum computing (CVQC) [Adesso et al., 2014], for example, has shown potential in modelling
and solving issues in quantum optics [Cerf et al., 2007]. Finally, multidisciplinary collaboration among researchers in
quantum computing, holography, and application-specific domains is critical for developing QCGH. Interdisciplinary
research can help create more effective and customised QCGH solutions, thereby expediting the realisation of their
potential advantages by encouraging a greater knowledge of each discipline’s underlying concepts and problems.



Chapter 5

Conclusion

We thoroughly explored the fields of holography, digital holography, and computer-generated holography (CGH) in
this thesis. An extensive literature analysis covering the fundamentals of holography, the development of holographic
methods, and the crucial shift from analogue to digital holography served as our first step in building a strong
foundation. As we dug into its complexities, we investigated the early iterations of CGH, including the Detour-Phase
Hologram and the Kinoform Hologram. Furthermore, we thoroughly investigated CGH algorithms, such as Iterative
Fourier Transform and Iterative Phase Retrieval, explaining their importance in building intricate 3D holographic
structures. The design and implementation of a quantum version of the Gerchberg-Saxton Algorithm was the primary
contribution of this study. With its design for quantum computers, this quantum method promises quicker and more
effective phase retrieval, opening up new possibilities for digital holography. To implement this innovative quantum
method, we spoke about using quantum gates, the Quantum Fourier Transform, and the creation of quantum circuits
with Qiskit.As we conclude this thesis, it is clear that there is a lot of potential in combining digital holography
with quantum computing. Exciting applications in complex field reconstruction await the development of quantum
stochastic gradient descent, quantum variants of the Gerchberg-Saxton Algorithm, and holography research utilising
cutting-edge libraries such as Odak and TorchQuantum. The enormous potential of quantum-assisted holography in
a variety of domains, from imaging to data storage and beyond, is depicted by this study, which acts as a first step
towards the union of quantum and holographic technologies.
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Appendix A

Code

In the appendix, we list the code written for this thesis.

A.1 Gerchberg-Saxton algorithm
Original idea of the Gerchberg Saxton:

� �
import numpy as np
from scipy.fftpack import fft2, ifft2
def gs_algorithm(I, phi0, max_iter=1000, tol=1e-6):

"""
Implements the Gerchberg-Saxton algorithm for phase retrieval.
Parameters:
-----------
I : ndarray

Measured intensity distribution.
phi0 : ndarray

Initial estimate of the phase distribution.
max_iter : int, optional

Maximum number of iterations.
tol : float, optional

Tolerance for convergence.
Returns:
--------
phi : ndarray

Reconstructed phase distribution.
"""
# Initialize variables
phi = phi0
E = np.sqrt(I) * np.exp(1j * phi)
prev_error = np.inf
# Iterate until convergence or maximum number of iterations
for i in range(max_iter):

# Estimate complex field from phase distribution
E_hat = fft2(E)
# Update amplitude of complex field
E = np.sqrt(I) * np.exp(1j * np.angle(E_hat))
# Update phase distribution
phi = np.angle(ifft2(E))
# Check for convergence
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error = np.mean(np.abs(np.exp(1j * phi) - E))
if error < tol:
break

# Check for increase in error
if error > prev_error:
print(f"Error␣increased␣at␣iteration␣{i}")
break

prev_error = error
return phi� �
Algorithm used to produce images in Chapter 3 idea of the Gerchberg Saxton:� �

import numpy as np
import matplotlib.pyplot as plt
from PIL import Image

def GS_algorithm(F, I, max_iter):
# F: The known amplitude of the object
# I: The measured intensity pattern
# max_iter: Maximum number of iterations

M, N = F.shape
G = np.random.rand(M, N) + 1j * np.random.rand(M, N) # Initialize guess for the

↩→ phase
G = np.exp(1j * np.angle(G)) # Convert the guess to a complex field with unit

↩→ magnitude

for iteration in range(max_iter):
# Step 1: Compute the Fourier transform of the guess
G_hat = np.fft.fftshift(np.fft.fft2(G))

# Step 2: Replace the magnitude with the measured intensity
G_hat = np.sqrt(I) * np.exp(1j * np.angle(G_hat))

# Step 3: Compute the inverse Fourier transform
G_new = np.fft.ifft2(np.fft.ifftshift(G_hat))

# Step 4: Replace the magnitude with the known amplitude
G_new = F * np.exp(1j * np.angle(G_new))

# Update the guess for the complex field
G = G_new

return G

# Example usage:
if __name__ == ’__main__’:

# Load an image to use as the object amplitude
image_path = "test.png" # Replace with the path to your image
object_amplitude = np.array(Image.open(image_path).convert("L")) # Load image and

↩→ convert to grayscale
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# Measure the diffraction pattern
object_phase = np.random.rand(*object_amplitude.shape) * 2 * np.pi
object_field = object_amplitude * np.exp(1j * object_phase)
diffraction_pattern = np.abs(np.fft.fftshift(np.fft.fft2(object_field))) ** 2

# Use the GS algorithm to reconstruct the object’s phase
reconstructed_field = GS_algorithm(object_amplitude, diffraction_pattern, max_iter

↩→ =100)

# Calculate the absolute difference between the original and reconstructed images
difference_image = np.abs(object_amplitude - np.abs(reconstructed_field))

# Display the results
plt.figure(figsize=(12, 8))

plt.subplot(141)
plt.title("Original␣Object")
plt.imshow(object_amplitude, cmap=’gray’)
plt.axis(’off’)

plt.subplot(142)
plt.title("Measured␣Diffraction␣Pattern")
plt.imshow(diffraction_pattern, cmap=’gray’)
plt.axis(’off’)

plt.subplot(143)
plt.title("Reconstructed␣Object")
plt.imshow(np.abs(reconstructed_field), cmap=’gray’)
plt.axis(’off’)

plt.subplot(144)
plt.title("Difference")
plt.imshow(difference_image, cmap=’viridis’)
plt.axis(’off’)

plt.show()� �
A.2 Gerchberg-Saxton Transport Function Code
Parameters for the transport function.

� �
wavelength = 515e-9
k = wavenumber(wavelength)
dx = 0.000008
resolution = [64, 64]
distance = 0.15� �

Transformation of the images:� �
image_path = ’test.png’
image = Image.open(image_path)
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# Define the transformation to apply to the image
transform = transforms.Compose([

transforms.Resize((resolution[0], resolution[1])),
transforms.Grayscale(num_output_channels=1),
transforms.ToTensor()

])

# Apply the transformation to the image
target = transform(image)� �

Propagation of the beam:� �
for i in t:

hologram = zero_pad(hologram)
recon_field = propagate_beam(hologram, k, distance, dx, wavelength, propagation_type)

↩→
recon_field = crop_center(recon_field)
recon_field = set_amplitude(recon_field, target)
recon_field = zero_pad(recon_field)
hologram = propagate_beam(recon_field, k, -distance, dx, wavelength,

↩→ propagation_type)
hologram = crop_center(hologram)
hologram = set_amplitude(hologram, amplitude)� �

A.3 Quantum Fourier Transform for Gerchberg-Saxton Code

Example of a QQFT in qiskit for 4 bits.� �
import qiskit
from math import pi

qc = qiskit.QuantumCircuit(4)

# Apply hadamard gate to first qubit
qc.h(0)

# Controlled phase rotations on remaining qubits
qc.cp(pi/2, 0, 1)
qc.cp(pi/4, 0, 2)
qc.cp(pi/8, 0, 3)

qc.cp(pi/4, 1, 2)
qc.cp(pi/8, 1, 3)

qc.cp(pi/8, 2, 3)� �
A.4 Quantum Gerchberg-Saxton Algorithm

The code for the quantum-GS algorithm.� �
from qiskit.visualization import circuit_drawer
from qiskit.visualization.state_visualization import _bloch_multivector_data
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from time import sleep
import tqdm
import matplotlib.pyplot as plt
import matplotlib.cm as cm

# Hologram and reconstruction planes
num_qubits = 4
iterations = 100

previous_amplitudes = [0]*num_qubits
previous_phases = [0]*num_qubits

# Target intensities
target_intensities = [0.2]*num_qubits
target_intensities[num_qubits//2] = 1.0

# Initial intensities
initial_intensities = [1.0*np.pi]*num_qubits

# Initial phases
initial_phases = np.random.rand(num_qubits)

def gerchberg_saxton(iterations = 5):

hologram = QuantumRegister(num_qubits, ’hologram’)
reconstruction = QuantumRegister(num_qubits, ’reconstruction’)

# Create classical registers for measurement results
reconstruction_measure = ClassicalRegister(num_qubits, ’reconstruction_measure’)
holographic_measure = ClassicalRegister(num_qubits, ’holographic_measure’)

qc = QuantumCircuit(hologram, reconstruction, holographic_measure,
↩→ reconstruction_measure)

def initialize_amplitudes_and_phases(qc, qubits, intensities, phases):
"""Sets the initial intensities and phases and applies QFT to the qubits."""

# Initialize the qubits with intensities and phases the first time
for i, qubit in enumerate(qubits):

amplitude = intensities[i]*np.pi # 0 if 0, pi if 1
previous_amplitudes[i] += amplitude
phase = phases[i]
previous_amplitudes[i] += phase

qc.ry(amplitude, qubit)
qc.rz(phase, qubit)

# interference pattern # replaced by QFT
#for qubit in qubits:
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# qc.h(qubit)

return qc

def set_intensities(qc, qubits, target_intensities):
"""Sets the intensities of the qubits."""

for i, qubit in enumerate(qubits):
amplitude = target_intensities[i]*np.pi # 0 if 0, pi if 1
qc.ry(amplitude-previous_amplitudes[i], qubit)

return qc

def propagate(qc, from_qubits, to_qubits, h2r = True):
"""Propagates information from one set of qubits to another by applying phase

↩→ shifts."""

#QFT
qft = QFT(num_qubits=num_qubits).to_gate()
if(h2r):

qc.append(qft, qargs=range(num_qubits))
else:

qc.append(qft, qargs=range(num_qubits,2*num_qubits))

for i, qubit in enumerate(from_qubits):
phase = -np.pi/16 if h2r else np.pi/16
qc.rz(phase, i if h2r else num_qubits + i)

#QFT
qft = QFT(num_qubits=num_qubits, inverse= True).to_gate()
if(h2r):

qc.append(qft, qargs=range(num_qubits))
else:

qc.append(qft, qargs=range(num_qubits,2*num_qubits))

for i in range(num_qubits):
qc.swap(from_qubits[i], to_qubits[i])

return qc

print("Creating␣Circuit")
pbar = tqdm.tqdm(total=iterations, desc=’iterations’, leave=False)

# Initialize hologram plane
initialize_amplitudes_and_phases(qc, hologram, initial_intensities,

↩→ target_intensities)

for i in range(iterations):
pbar.update(1)
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# Propagate to reconstruction plane
propagate(qc, hologram, reconstruction, True)

# Set target intensities
set_intensities(qc, reconstruction, target_intensities)

if(i == iterations-1 ): break

# Propagate to hologram plane
propagate(qc, reconstruction, hologram, False)

# Set target intensities
set_intensities(qc, hologram, initial_intensities)

pbar.close()

# Simulate
print("Simulating...")

simulator = Aer.get_backend(’statevector_simulator’)
job = execute(qc, simulator)
result = job.result()
statevector = result.get_statevector()
bloch_data = (_bloch_multivector_data(statevector))

amplitudes_h = []
amplitudes_r = []
phases_h = []
phases_r = []
for i in range(len(bloch_data)):

q = bloch_data[i]
theta = np.arccos(q[2])
phi = np.arctan2(q[1],q[0])

#hologram
if(i < num_qubits):

amplitudes_h.append(theta)
phases_h.append(phi)

else:
#reconstruction

amplitudes_r.append(theta)
phases_r.append(phi)

return amplitudes_h, phases_h, amplitudes_r, phases_r , qc� �
A.5 Quantum Gerchberg-Saxton Visualization
Here we provide the code for visualizing the algorithm results.
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� �
def visualize_states(amplitudes_h, phases_h, amplitudes_r, phases_r, target_intensities,

↩→ count):
def normalize(vector):

magnitude = np.linalg.norm(vector)

# Step 2: Normalize the vector by dividing each component by the magnitude
return [component / (magnitude) for component in vector]

print(amplitudes_r)
plt.figure(figsize=(4, 3))
plt.bar(range(num_qubits), normalize(amplitudes_r), label=’Selected␣Amplitudes’,

↩→ alpha=0.7, color=’b’, width=0.4)
plt.bar(range(num_qubits), normalize(target_intensities), label=’Target␣Intensities’,

↩→ alpha=0.7, color=’r’, width=0.2)

# Add labels and a legend
plt.xlabel(’States’)
plt.ylabel(’Intensity’)
plt.title(’Comparison␣of␣Averaged␣Amplitudes␣and␣Target␣Intensities’)
plt.xticks(rotation=90)
plt.tight_layout()
#plt.show()
file_name = f"amplitudes_chart_{str(count).zfill(5)}.png"
plt.savefig(file_name)
plt.clf()

plt.bar(range(num_qubits), phases_r) # last propagation put h into r
plt.xlabel(’qubit’)
plt.ylabel(’Values’)
plt.title(’Qubit␣Phases’)
plt.xticks(rotation=90)
plt.tight_layout()
#plt.show()
file_name = f"phases_chart_{str(count).zfill(5)}.png"
plt.savefig(file_name)
plt.clf()

for i in range(1,iterations+1, 1):
print("----------------------------␣Iterations:␣", i, "␣

↩→ --------------------------------------")
a_h, p_h, a_r, p_r, qc = gerchberg_saxton(i)
visualize_states(a_h, p_h, a_r, p_r, target_intensities, i)� �

A.6 Stochastic Gradient Descent for Holography
Odak version for SGD for holographic reconstruction.� �
import torch
from odak.learn.wave import calculate_phase, calculate_amplitude, wavenumber,

↩→ propagate_beam, produce_phase_only_slm_pattern, set_amplitude,
↩→ generate_complex_field, linear_grating

from odak.learn.tools import zero_pad, crop_center, save_image,load_image
from odak import np
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from tqdm import tqdm

wavelength = 515e-9
k = wavenumber(wavelength)

dx = 0.000008
resolution = [1080,1920]
distance = 0.15
square_size = 100
target = torch.zeros(resolution[0],resolution[1])
target[round((resolution[0]-square_size)/2):round((resolution[0]+square_size)/2),round((

↩→ resolution[1]-square_size)/2):round((resolution[1]+square_size)/2)] = 1.

import matplotlib.pyplot as plt
import matplotlib.cm as cm
plt.imshow(target, cmap=cm.inferno)
plt.colorbar()
plt.show()

propagation_type = ’TR␣Fresnel’
slm_range = 2*np.pi
dynamic_range = 255

iteration_number = 100
t = tqdm(range(iteration_number), leave=False)

phase = torch.rand(resolution[0], resolution[1])
amplitude = torch.ones_like(target)
hologram = generate_complex_field(amplitude,phase)

loss_function = torch.nn.MSELoss(reduction=’none’)
alpha = 0.1

for i in t:
hologram_padded = zero_pad(hologram)
recon_field = propagate_beam(hologram_padded, k, distance, dx, wavelength,

↩→ propagation_type)
recon_field_cropped = crop_center(recon_field)
recon_intensity = calculate_amplitude(recon_field_cropped)**2
loss = loss_function(recon_intensity, target)
loss_field = generate_complex_field(loss, calculate_phase(recon_field_cropped))
loss_field_padded = zero_pad(loss_field)
loss_propagated_padded = propagate_beam(loss_field_padded, k, -distance, dx,

↩→ wavelength, propagation_type)
loss_propagated = crop_center(loss_propagated_padded)
hologram_updated = hologram - alpha * loss_propagated
hologram_phase = calculate_phase(hologram_updated)
hologram = generate_complex_field(amplitude, hologram_phase)
t.set_description(’Loss:{:.4f}’.format(torch.mean(loss)))

hologram_padded = zero_pad(hologram)
reconstruction = propagate_beam(hologram_padded, k, distance, dx, wavelength,

↩→ propagation_type)



66 APPENDIX A. CODE

reconstruction = crop_center(reconstruction)

reconstruction_amp = calculate_amplitude(reconstruction)
reconstruction_intensity = (reconstruction_amp / reconstruction_amp.max())**2
save_image(’reconstructed_image.png’,reconstruction_intensity,cmin=0.,cmax=1.)

plt.imshow(reconstruction_intensity, cmap=cm.inferno)
plt.colorbar()
plt.show()

phase_hologram = calculate_phase(hologram)
phase_only_hologram = (phase_hologram % slm_range) / slm_range * dynamic_range
save_image(’phase_only_hologram.png’, phase_only_hologram)

plt.imshow(phase_only_hologram, cmap=cm.inferno)
plt.colorbar()
plt.show()� �
A.7 Quantum Stochastic Gradient Descent for Holography

A possible approach of QuantumSGD using Qiskit:� �
import qiskit
from qiskit.circuit.library import PhasedAmpQubit
from qiskit.circuit.quantumregister import QuantumRegister

import torch
from odak.learn.wave import calculate_phase, calculate_amplitude, wavenumber,

↩→ propagate_beam, produce_phase_only_slm_pattern, set_amplitude,
↩→ generate_complex_field, linear_grating

from odak.learn.tools import zero_pad, crop_center, save_image,load_image
from odak import np
from tqdm import tqdm

wavelength = 515e-9
k = wavenumber(wavelength)

dx = 0.000008
resolution = [1080,1920]
distance = 0.15
square_size = 100
target = torch.zeros(resolution[0],resolution[1])
target[round((resolution[0]-square_size)/2):round((resolution[0]+square_size)/2),round((

↩→ resolution[1]-square_size)/2):round((resolution[1]+square_size)/2)] = 1.

import matplotlib.pyplot as plt
import matplotlib.cm as cm
plt.imshow(target, cmap=cm.inferno)
plt.colorbar()
plt.show()

propagation_type = ’TR␣Fresnel’
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slm_range = 2*np.pi
dynamic_range = 255

iteration_number = 100
t = tqdm(range(iteration_number), leave=False)

qreg = QuantumRegister(resolution[0] * resolution[1])
circuit = qiskit.QuantumCircuit(qreg)

loss_function = torch.nn.MSELoss(reduction=’none’)
alpha = 0.1

for i in t:
# propagate the field
circuit.append(PhasedAmpQubit(k, distance, dx, wavelength, propagation_type), qreg)

# set the amplitude
circuit.set_amplitude(target, qreg)

# propagate the field back
circuit.append(PhasedAmpQubit(k, -distance, dx, wavelength, propagation_type), qreg)

# measure the field
counts = qiskit.execute(circuit, backend=qiskit.Aer.get_backend(’qasm_simulator’)).

↩→ result().get_counts()

# reconstruct the image
reconstruction = []
for i in range(resolution[0] * resolution[1]):

amplitude = counts.get(str(i), 0) / (2**resolution[0] * resolution[1])
phase = i * slm_range / dynamic_range
reconstruction.append(complex(amplitude, phase))

loss = loss_function(reconstruction, target)
loss_field = generate_complex_field(loss, calculate_phase(reconstruction))

# update the field
for i in range(resolution[0] * resolution[1]):

circuit.cx(i, i + 1)
circuit.rz(alpha * loss_field[i], i)
circuit.cx(i, i + 1)� �


